A evolução da pesca de linha-defundo e a dinâmica de população do Peixe-batata, *Lopholatilus villarii* (Teleostei:Malacanthidae) na margem continental da costa brasileira entre os paralelos 22° e 28°S.

> Tese de doutorado apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para a obtenção do grau de Doutor em Ciências, área de Oceanografia Biológica

Orientador: Prof. Dr. Yasunobu Matsuura

São Paulo 2002

A obra A evolução da pesca de linha-de-fundo e a dinâmica de população do Peixe-batata, Lopholatilus villarii (Teleostei:Malacanthidae) na margem continental da costa brasileira entre os paralelos 22° e 28°S de Ávila-da-Silva, Antônio Olinto foi licenciada com uma Licença Creative Commons - Atribuição -Uso Não Comercial - Obras Derivadas Proibidas 3.0 Não Adaptada. Universidade de São Paulo Instituto Oceanográfico

A evolução da pesca de linha-de-fundo e a dinâmica de população do Peixe-batata, *Lopholatilus villarii* (Teleostei:Malacanthidae) na margem continental da costa brasileira entre os paralelos 22° e 28°S.

Antônio Olinto Ávila-da-Silva

Tese de doutorado apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para a obtenção do grau de Doutor em Ciências, área de Oceanografia Biológica.

Aprovada em 09/12/2002

Comissão Julgadora

Titulares

Dr. Yasunobu Matsuura Instituto Oceanográfico da Universidade de São Paulo - IOUSP (orientador e presidente da banca) Dra. Carmen Lúcia Del Bianco Rossi-Wongtschowski Instituto Oceanográfico da Universidade de São Paulo – IOUSP

Dr. Manuel Haimovici Departamento de Oceanografia da Fundação Universidade do Rio Grande – FURG Maria Cristina Cergole Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA

Dr. Miguel Petrere Júnior Instituto de Biociências da Universidade Estadual Paulista – UNESP / Rio Claro

Suplentes

Dr. Mário Katsuragawa Instituto Oceanográfico da Universidade de São Paulo – IOUSP Dr. José Angel Alvarez Perez Centro de Ciências Tecnológicas, da Terra e do Mar da Universidade do Vale do Itajaí – CTTMar / UNIVALI

À Cintia aos meus pais Olintho e Hildete e à Maria Thomásia

ÍNDICE

ÍNDICE DE TABELAS ÍNDICE DE FIGURAS AGRADECIMENTOS RESUMO ABSTRACT 1 INTRODUÇÃO 2 OBJETIVOS 3 ÁREA DE ESTUDO 4 MATERIAL E MÉTODOS 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES. 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE Lopholatilus	iii
 ÍNDICE DE FIGURAS AGRADECIMENTOS RESUMO ABSTRACT INTRODUÇÃO OBJETIVOS 3 ÁREA DE ESTUDO 4 MATERIAL E MÉTODOS 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 4.1 ESTRUTURA DE COMPRIMENTOS 4.2 RELAÇÕES BIOMÉTRICAS 4.4 DINÊ DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.3 DINÂMICA POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5.3 DINÂMICA POPULAÇÃO E ABUNDÂNCIA. 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE LOPHOLATIUS villarii 	v
AGRADECIMENTOS RESUMO ABSTRACT 1 INTRODUÇÃO 2 OBJETIVOS 3 ÁREA DE ESTUDO 4 MATERIAL E MÉTODOS 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.3 CICLO DEPRODUTIVO <th> X</th>	X
 RESUMO	xviii
 ABSTRACT INTRODUÇÃO OBJETIVOS GBJETIVOS ÁREA DE ESTUDO MATERIAL E MÉTODOS MATERIAL E MÉTODOS MATERIAL E MÉTODOS MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii 4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 	XX
1 INTRODUÇÃO 2 OBJETIVOS 3 ÁREA DE ESTUDO 4 MATERIAL E MÉTODOS 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDÂDE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.2 RELAÇÕES BIOMÉTRICAS	xxi
 2 OBJETIVOS 3 ÁREA DE ESTUDO 4 MATERIAL E MÉTODOS 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 INÓDELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 5.3 DINÂMICA POPULACIONAL DE LOPHOLATIVA 	1
 ÁREA DE ESTUDO	4
 4 MATERIAL E MÉTODOS	5
 4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL	8
 4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii	8
 4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO. 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA. 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 	11
 4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii	15
 4.4.1 ESTRUTURA DE COMPRIMENTOS 4.4.2 RELAÇÕES BIOMÉTRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 	17
 4.4.2 RELAÇÕES BIOMETRICAS 4.4.3 CICLO REPRODUTIVO 4.4.4 IDADE E CRESCIMENTO 4.4.5 TAXAS DE MORTALIDADE 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 	17
 4.4.3 CICLO REPRODUTIVO	17
 4.4.4 IDADE E CRESCHMENTO	10
 4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii 5 RESULTADOS	19 22
 PESCARIA DE Lopholatilus villarii RESULTADOS 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 	22
 5 RESULTADOS	24
 5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL	27
 5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (Lopholatilus villarii) 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii. 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.3 CICLO PEPPODUTIVO 	27
 5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO I PEIXE-BATATA (<i>Lopholatilus villarii</i>) 5.3 DINÂMICA POPULACIONAL DE <i>Lopholatilus villarii</i> 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.3 CICLO PEPPODUITIVO 	35
 5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.3 CICLO PEPPODUTIVO 	40
 5.3.1 ESTRUTURA DE COMPRIMENTOS 5.3.2 RELAÇÕES BIOMÉTRICAS 5.3.3 CICLO PEPPODUTIVO 	43
5.3.2 RELAÇÕES BIOMÉTRICAS	43
5.2.2 CICLO DEDDODUTIVO	44
5.5.5 CICLO KLF KODU IIV 0	45
5.3.4 IDADE E CRESCIMENTO	46
5.3.5 I AAAS DE MOKTALIDADE	49
PESCARIA DE Lopholatilus villarii	50

6	DISCUSSÃO	52
6.1	DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA	52
6.2	ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL	59
6.3	DINÂMICA DE POPULAÇÃO, ANÁLISE DE POPULAÇÃO VIRTUAL REDIMENTO DA PESCARIA DE <i>Lopholatilus villarii</i>	, E 67
7	CONCLUSÕES	76
8	BIBLIOGRAFIA	79
9	TABELAS	90
10	FIGURAS 1	147

ÍNDICE DE TABELAS

 Tabela 1: Operações de pesca executadas pelo N/Pq <i>Orion</i> com indicação dos números de referência do cruzeiro e da operação, data, latitude, longitude, profundidade (Prof., m), esforço de pesca (E, 1000 anzóis-hora), número de peixes capturados (N) e captura por unidade de esforço (CPUE)
Tabela 2: Operações de pesca executados pelo B/Pq <i>Margus II</i> com indicação dos números de referência do cruzeiro e da operação, data, latitude, longitude, profundidade (Prof. m), esforço de pesca (E), número de peixes capturados (N), número de espécies de peixes capturados (Nsp), e os índices de CPUE, de diversidade de Shannon (H') e de equitatividade de Pielou (Eq)
Tabela 3: Lista das espécies capturadas nas operações de pesca realizadas pelo N/PqOrion e pelo B/P Margus II.102
Tabela 4: Números absoluto (N) e relativo (N%) de indivíduos capturados por espéciesnas operações de pesca do N/Pq Orion104
Tabela 5: Números absoluto (N) e relativo (N%) de indivíduos capturados por espéciesnas operações de pesca do B/P Margus II104
Tabela 6: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos dados de CPUE das operações de pesca do N/Pq Orion
Tabela 7: Médias da CPUE (n/1000ah) das três principais espécies capturadas por classes de latitude (°S) e profundidade (m) nas operações de pesca do N/Pq Orion. 105
Tabela 8: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos dados de CPUE das operações de pesca do B/P Margus II.105
Tabela 9: Médias da <i>CPUE</i> (n/1000ah) das três principais espécies capturadas por cruzeiro (primavera e outono) e classes de latitude (°S) e profundidade (m) nas operações de pesca do B/P <i>Margus II</i>
Tabela 10: Análise de deviância para o modelo linear generalizado, baseado na distribuição normal com função de ligação logarítmica, ajustado aos valores de diversidade de Shannon calculados para as operações de pesca do B/P <i>Margus II</i> .
Tabela 11: Análise de deviância para o modelo linear generalizado, baseado na distribuição normal com função de ligação logarítmica, ajustado aos valores de diversidade de equitatividade calculados para as operações de pesca do B/P Margus II. 107
Tabela 12: Espécies selecionadas pelo número de indivíduos (N) e pela freqüência relativa de ocorrência (Fr) nas operações de pesca do N/Pq <i>Orion</i> 108
Tabela 13: Espécies selecionadas pelo número de indivíduos (N) e pela freqüência relativa de ocorrência (Fr) nas operações de pesca do B/P <i>Margus II</i> 108

Tabela 14: Freqüência relativa, abundância relativa, valores indicativos e nível de significância das espécies nos grupos de operações de pesca do N/Pq <i>Orion</i> determinados através da análise do TWINSPAN
Tabela 15: Freqüência relativa, abundância relativa, valores indicativos e nível de significância das espécies nos grupos de operações de pesca do cruzeiro de primavera do B/P <i>Margus II</i> determinados através da análise do TWINSPAN 110
Tabela 16: Freqüência relativa, abundância relativa, valores indicativos e nível de significância das espécies nos grupos de operações de pesca do cruzeiro de outono do B/P <i>Margus II</i> determinados através da análise do TWINSPAN 111
Tabela 17: Autovalores, coeficientes de correlação espécies-variáveis ambien-tais N/Pq Orion
Tabela 18: Valores de correlação entre os eixos das espécies e as variáveis ambientais N/Pq Orion. 112
Tabela 19: Autovalores, coeficientes de correlação espécies-variáveis ambien-tais cruzeiro de primavera do B/P Margus II
Tabela 20: Valores de correlação entre os eixos das espécies e as variáveis ambientais cruzeiro de primavera do B/P Margus II. 112
Tabela 21: Autovalores, coeficientes de correlação espécies-variáveis ambien-tais cruzeiro de outono do B/P Margus II
Tabela 22: Valores de correlação entre os eixos das espécies e as variáveis ambientais cruzeiro de outono do B/P Margus II. 113
Tabela 23: Número de barcos com cruzeiros de pesca de linha-de-fundo registrados por frota e ano. 113
Tabela 24: Número de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo por ano e porto de desembarque 113
Tabela 25: Produção (kg) das principais espécies demersais desembarcadas pelos barcos de linha-de-fundo por ano e porto. Para cada ano, a produção das três principais espécies desembarcadas por porto encontra-se sublinhada
Tabela 26: Esforço de pesca (dias efetivos de pesca) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo por ano e porto de desembarque
Tabela 27: Números absolutos (N) e relativos (N%) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, nos portos de desembarque de Niterói, Ubatuba e Santos, por classe de participação relativa da principal espécie capturada no peso total desembarcado.
Tabela 28: Número relativo (%) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, por portos de procedência e de desembarque.116
Tabela 29: Número relativo (%) de desembarques por porto de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, que reportaram operações de pesca por faixa de latitude*. 116

Tabela 30: Freqüência relativa de ocorrência das principais espécies capturadas pelos Tabela 31: Níveis explicativos de qualificação para o nível explicativo de 80% para as principais espécies capturadas pelos barcos de linha-de-fundo por ano e porto de Tabela 32: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de CPUE de Lopholatilus villarii das frotas de linha-de-fundo de Niterói, Ubatuba e Santos, nos anos de 1996 a 1999. 119 Tabela 33: Coeficientes do modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de CPUE de Lopholatilus villarii das frotas de linha-de-fundo de Niterói, Ubatuba e Santos, nos anos de 1996 Tabela 34: Distribuição anual de freqüência por classe de comprimento furcal, Lf (mm), de Lopholatilus villarii capturado por métodos de pesca de linha-de-fundo entre as Tabela 35: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de comprimento furcal de Lopholatilus villarii capturado nas operações de pesca do B/P Margus II entre as latitudes de 22° e 28°S. Tabela 36: Estimativa dos coeficientes da regressão linear do comprimento padrão em função do comprimento furçal de Lopholatilus villarii, Ls=a+bLf, seus intervalos de confiança (IC) ao nível de significância de 0.05, seus níveis de significância (P) Tabela 37: Estimativa dos coeficientes da regressão linear do comprimento total em função do comprimento furcal de Lopholatilus villarii, Lt= a+bLf, seus intervalos de confiança (IC) ao nível de significância de 0.05, seus níveis de significância (P) Tabela 38: Estimativa dos coeficientes da regressão de potência do peso total em função do comprimento furcal de *Lopholatilus villarii*, Wt= aLf^b, seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis de significância (P) e o Tabela 39: Proporção sexual de Lopholatilus villarii por classe de comprimento furcal Tabela 40: Número de otólitos de Lopholatilus villarii analisados por sexo e classe de Tabela 41: Número de otólitos de Lopholatilus villarii analisados por sexo e mês.... 124 Tabela 42: Número de machos e fêmeas de Lopholatilus villarii por número de anéis Tabela 43: Estimativa dos coeficientes da regressão logística do comprimento furcal em função do raio total do otólito de *Lopholatilus villarii*, Lf= $a \div (1+b \times c^{Rt})$, seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis de

Tabela 44: Comprimento furcal (Lf mm) retrocalculado para machos de Lopholatilus *villarii* (n representa o número de exemplares por classe etária e \overline{L} f o comprimento Tabela 45: Comprimento furcal (Lf mm) retrocalculado para fêmeas de Lopholatilus *villarii* (n representa o número de exemplares por classe etária e \overline{L} f o comprimento Tabela 46: Comprimento furcal (Lf mm) retrocalculado para sexos agrupados de Lopholatilus villarii (n representa o número de exemplares por classe etária e Lf o Tabela 47: Parâmetros da equação de crescimento de von Bertalanffy, intervalos de confianca (IC, $\alpha=0.05$), nível de significância (P), graus de liberdade (gl) e valores de performance de crescimento (ϕ ') para machos, fêmeas e sexos agrupados de Lopholatilus villarii ajustados sobre dados de (1) comprimento furcal médio retrocalculado por idade, (2) comprimento furcal retrocalculado por peixe por Tabela 48: Chave comprimento-idade de *Lopholatilus villarii*, sexos agrupados, capturado ao largo da costa brasilera entre as latitudes 22 e 28°S, nos anos de 1994 Tabela 49: Taxas anuais de mortalidade total (Z), intervalos de confiança (IC, α =0,05), nível de significância (P) e taxa de sobrevivência (S) de Lopholatilus villarii Tabela 50: Pesos totais, Wt (kg), estimados para o meio de cada classe de comprimento furcal, Lf (cm), de Lopholatilus villarii capturado ao largo da costa brasilera entre Tabela 51: Peso total, Wt (kg), amostrado por ano e por classe de comprimento furcal, *Lf* (cm), de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as Tabela 52: Participação relativa (%) anual do peso de cada classe de comprimento furcal, Lf (cm), de Lopholatilus villarii capturado ao largo da costa brasilera entre Tabela 53: Captura (kg) de Lopholatilus villarii ao largo da costa brasilera entre as latitudes 22 e 28°S, desembarcada pela frota de linha-de-fundo nos portos de Tabela 54: Estimativa do peso total (kg) desembarcado, por ano e por classe de comprimento furcal, Lf (cm), de Lopholatilus villarii capturado ao largo da costa brasilera entre as latitudes 22 e 28°S. Tabela 55: Estimativa do número de indivíduos desembarcados, por ano e por classe de comprimento furcal, Lf (cm), de Lopholatilus villarii capturado ao largo da costa Tabela 56: Estimativa do número de indivíduos de Lopholatilus villarii desembarcados por ano e por classe etária, provenientes de capturas realizadas ao largo da costa Tabela 57: Taxas de mortalidade por pesca (F) por classe etária e por ano, e taxa média de mortalidade por pesca ($F_{5,23}$), estimadas pela análise de população virtual para

<i>Lopholatilus villarii</i> da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (M) de 0,11 ano ⁻¹
Tabela 58: Taxas médias de mortalidade por pesca (\overline{F}) para diferentes faixas etárias nos anos de 1995 a 1998, estimadas pela análise de população virtual para <i>Lopholatilus villarii</i> da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (M) de 0,11 ano ⁻¹
 Tabela 59: Número total de indivíduos por classe etária no início de cada ano, estimados pela análise de população virtual para <i>Lopholatilus villarii</i>, ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (<i>M</i>) de 0,11 ano⁻¹.
Tabela 60: Número médio de indivíduos por classe etária e ano, estimados pela análise de população virtual para <i>Lopholatilus villarii</i> , ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (<i>M</i>) de 0,11 ano ⁻¹ .
Tabela 61: Biomassa média (kg) por classe etária e ano, estimadas pela análise de população virtual para <i>Lopholatilus villarii</i> , ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (<i>M</i>) de 0,11 ano ⁻¹ .
Tabela 62: Produção pesqueira (kg) por classe etária e ano, estimadas a partir dos resultados na análise de população virtual para <i>Lopholatilus villarii</i> , ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (<i>M</i>) de 0,11 ano ⁻¹
Tabela 63: Rendimento por recruta (g), biomassa média por recruta (g) e porcentagem da biomassa em relação à biomassa virgem (Y/R , $\overline{B/R} \in \overline{B/R} Bv$) de <i>Lopholatilus</i> <i>villarii</i> , ao largo da costa brasileira entre as latitudes 22 e 28°S, em função da taxa mortalidade por pesca (<i>F</i>). O valor com sublinhado simples indica o rendimento- por-recruta no F_{max} e o valor com sublinhado duplo no $F_{0,1}$
Tabela 64: Rendimentos por recruta (g) para padrões de pesca com diferentes taxas de mortalidade por pesca (F) e idade de primeira captura (Tc) para Lopholatilus villarii, ao largo da costa brasileira entre as latitudes 22 e 28°S. Os valores com sublinhado simples indicam os rendimentos-por-recruta no F_{max} e os com sublinhado duplo no $F_{0,1}$
Tabela 65: Rendimentos-por-recruta (g) para padrões de pesca com diferentes taxas de mortalidade por pesca (<i>F</i>) e natural (<i>M</i>) para <i>Lopholatilus villarii</i> , ao largo da costa brasileira entre as latitudes 22 e 28°S. Os valores com sublinhado simples indicam os rendimentos-por-recruta no F_{max} e os com sublinhado duplo no $F_{0,1}$
Tabela 66: Modelo de Thompson e Bell ajustado para Lopholatilus villarii, ao largo dacosta brasileira entre as latitudes 22 e 28°S146

ÍNDICE DE FIGURAS

Figura 1: Posições das 197 operações de pesca executadas pelo N/Pq <i>Orion</i> nos anos de 1994 e 1995
Figura 2: Posições das 106 operações de pesca executadas pelo B/P <i>Margus II</i> nos anos de 1996 e 1997
Figura 3: Latitude e profundidade (m) das 197 operações de pesca executadas pelo N/Pq Orion nos anos de 1994 e 1995
Figura 4: Latitude e profundidade (m) das 106 operações de pesca executadas pelo B/P Margus II nos anos de 1996 e 1997
Figura 5: Distribuição de freqüência e curva de densidade gama ajustada aos valores de <i>CPUE</i> (n/1000ah) calculados para as operações do N/Pq <i>Orion</i>
Figura 6: Diagrama de dispersão dos resíduos do modelo de variação da <i>CPUE</i> nas operações do N/Pq <i>Orion</i> . 150
Figura 7: Gráfico normal de probabilidade da deviância residual do modelo de variação da <i>CPUE</i> nas operações do N/Pq <i>Orion</i> em função dos percentis da distribuição normal padrão
Figura 8: <i>Boxplot</i> da <i>CPUE</i> (n/1000 ah) nas operações do N/Pq <i>Orion</i> por estrato de profundidade e faixa de latitude
Figura 9: Distribuição de freqüência e curva de densidade gama ajustada aos valores de <i>CPUE</i> (n/1000ah) calculados para as operações do B/P <i>Margus II</i> 152
Figura 10: Diagrama de dispersão dos resíduos do modelo de variação da <i>CPUE</i> nas operações do B/P <i>Margus II</i> 152
Figura 11: Gráfico normal de probabilidade da deviância residual do modelo de variação da <i>CPUE</i> nas operações do B/P <i>Margus II</i> em função dos percentis da distribuição normal padrão
Figura 12: <i>Boxplot</i> da <i>CPUE</i> (n/1000 ah) nas operações do B/P <i>Margus II</i> por estrato de profundidade e faixa de latitude
Figura 13: <i>Boxplot</i> da <i>CPUE</i> (n/1000 ah) nas operações do B/P <i>Margus II</i> por cruzeiro (primavera e outono) e estrato de profundidade (m)
Figura 14: Distribuição de freqüência e curva de densidade normal ajustada aos valores do índice de diversidade de Shannon (H') calculados para as operações do B/P Margus II
Figura 15: Diagrama de dispersão dos resíduos do modelo de variação do índice de diversidade de Shannon (<i>H</i> ') nas operações do B/P <i>Margus II</i> 155
Figura 16: Gráfico normal de probabilidade da deviância residual do modelo de variação do índice de diversidade de Shannon (<i>H</i> ') nas operações do B/P <i>Margus II</i> em função dos percentis da distribuição normal padrão
Figura 17: <i>Boxplot</i> do índice de diversidade de Shannon (<i>H</i> ') nas operações de pesca do B/P <i>Margus II</i> por estrato de profundidade e faixa de latitude

Figura 18: <i>Boxplot</i> do índice de diversidade de Shannon (<i>H</i> ') nas operações de pesca do B/P <i>Margus II</i> por cruzeiro (primavera e outono) e estrato de profundidade 156
Figura 19: Distribuição de freqüência e curva de densidade normal ajustada aos valores de equitatividade (<i>Eq</i>) calculados para as operações do N/P <i>Margus II</i>
Figura 20: Diagrama de dispersão dos resíduos do modelo de variação do índice de equitatividade (<i>Eq</i>) nas operações do B/P <i>Margus II</i>
Figura 21: Gráfico normal de probabilidade da deviância residual do modelo de variação do índice de equitatividade (<i>Eq</i>) nas operações do B/P <i>Margus II</i> em função dos percentis da distribuição normal padrão
Figura 22: <i>Boxplot</i> do índice de equitatividade (<i>Eq</i>) nas operações de pesca do B/P <i>Margus II</i> por estrato de profundidade e faixa de latitude
Figura 23: <i>Boxplot</i> do índice de equitatividade (<i>Eq</i>) nas operações de pesca do B/P <i>Margus II</i> por cruzeiro (primavera e outono) e estrato de profundidade
Figura 24: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do N/Pq <i>Orion</i> .
 Figura 25: Características dos grupos de operações de pesca do N/Pq <i>Orion</i> determinados através do TWINSPAN: a) <i>CPUE</i> (n/1000ah), b) profundida-de (m), c) latitude (°S), d) longitude (W°).
Figura 26: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do cruzeiro de primavera do B/P <i>Margus II</i>
Figura 27: Características dos grupos de operações de pesca do cruzeiro de primavera do B/P <i>Margus II</i> determinados através do TWINSPAN: a) <i>CPUE</i> (n/1000ah), b) profundidade (m), c) latitude (°S), d) longitude (W°)
Figura 28: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do cruzeiro de outono do B/P <i>Margus II</i>
Figura 29: Características dos grupos de operações de pesca do cruzeiro de outono do B/P <i>Margus II</i> determinados através do TWINSPAN: a) <i>CPUE</i> (n/1000ah), b) profundidade (m), c) latitude (°S), d) longitude (W°)
Figura 30: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas dos cruzeiros do N/Pq <i>Orion</i> . Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 24
Figura 31: Mapa do primeiro eixo da Análise Canônica de Correspondência das capturas do N/Pq <i>Orion</i> . As operações de pesca encontram-se representadas por símbolos (●,O,□ e ■), agrupados de acordo com resultados obtidos com o TWINSPAN indicados na Figura 24. Os valores atribuídos às espécies referem-se à sua posição em relação ao primeiro eixo canônico da Figura 30. As isolinhas

representam a interpolação dos valores das operações de pesca em relação ao primeiro eixo canônico168
Figura 32: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas do cruzeiro de primavera do B/P <i>Margus II</i> . Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 26
Figura 33: Mapa do primeiro eixo da Análise Canônica de Correspondência das capturas do cruzeiro de primavera do B/P <i>Margus II</i> . As operações de pesca encontram-se representadas por símbolos (●,O,□ e ■), agrupados de acordo com resultados obtidos com o TWINSPAN indicados na Figura 26. Os valores atribuídos às espécies referem-se à sua posição em relação ao primeiro eixo canônico da Figura 32. As isolinhas representam a interpolação dos valores das operações de pesca em relação ao primeiro eixo canônico
Figura 34: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas do cruzeiro de outono do B/P <i>Margus II</i> . Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 28
Figura 35: Mapa do primeiro eixo da Análise Canônica de Correspondência das capturas do cruzeiro de outono do <i>B/P Margus II</i> . As operações de pesca encontram-se representadas por símbolos (●,O,□ e ■), agrupados de acordo com resultados obtidos com o TWINSPAN indicados na Figura 28. Os valores atribuídos às espécies referem-se à sua posição em relação ao primeiro eixo canônico da Figura 34. As isolinhas representam a interpolação dos valores das operações de pesca em relação ao primeiro eixo canônico
Figura 36: Diagrama de ordenação resultante da Análise Canônica de Correspondência das capturas dos cruzeiros de primavera (1) e outono (2) do B/P <i>Margus II</i> . As setas tracejadas indicam a movimentação das espécies em função dos dois primeiros eixos canônicos
Figura 37: Produção trimestral de peixes pelágicos desembarcada por barcos de linha- de-fundo nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999 174
Figura 38: Produção trimestral de peixes demersais desembarcada por barcos de linha- de-fundo nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999 174
Figura 39: Esforço de pesca trimestral (dias efetivos de pesca) de cruzeiros direcionados para a captura de peixes demersais de barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.
Figura 40: <i>CPUE</i> (kg/dia) trimestral de cruzeiros direcionados para a captura de peixes demersais de barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999
Figura 41: Freqüência acumulada da participação relativa da espécie por desembarque no período de 1996 a 1999
Figura 42: Produção trimestral do <i>Genidens barbus</i> desembarcada por barcos de linha- de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 43: Produção trimestral do Lopholatilus villarii desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de Figura 44: Produção trimestral do Epinephelus niveatus desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de Figura 45: Produção trimestral de *Pseudopercis* spp. desembarcada por barcos de linhade-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a Figura 46: Distribuição de freqüência e curva de densidade gama ajustada aos valores de CPUE (kg/dia) de Lopholatilus villarii calculados para os cruzeiros das frotas de linha-de-fundo nos anos de 1996 a 1999. Figura 47: Diagrama de dispersão dos resíduos do modelo de variação da CPUE (kg/dia) de Lopholatilus villarii nos cruzeiros das frotas de linha-de-fundo nos anos Figura 48: Gráfico normal de probabilidade do resíduo componente do desvio padronizado do modelo de variação da CPUE (kg/dia) de Lopholatilus villarii nos cruzeiros das frotas de linha-de-fundo nos anos de 1996 a 1999. As linhas tracejadas indicam o intervalo de confiança (α =5%) da estimativa da normal Figura 49: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por porto de desembarque dos barcos de linha-de-fundo nos anos de 1996 a 1999. 184 Figura 50: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por classe de latitude dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Figura 51: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por ano dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos Figura 52: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por trimestre dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói. Santos e Ubatuba nos Figura 53: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por faixa de longitude dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói. Santos e Figura 54: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por porto de desembarque (Niterói, Santos e Ubatuba) e trimestre, dos barcos de linha-de-fundo nos anos de Figura 55: Boxplot da CPUE (kg/dia) de Lopholatilus villarii por ano e trimestre, dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Figura 56: CPUE (kg/dia de pesca) média observada (CPUE) e ajustada (CPUE') dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e

Figura 57: Variação anual da <i>CPUE</i> padronizada de <i>Lopholatilus villarii</i> obtida pelos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999
Figura 58: Distribuição de freqüência de <i>Lopholatilus villarii</i> por classe de comprimento furcal (Lf mm), curva de captura e, indicado pela seta, o comprimento médio de captura
Figura 59: <i>Boxplot</i> e média (■) do comprimento furcal (Lf mm) de <i>Lopholatilus villarii</i> por ano
Figura 60: Distribuição anual de freqüência por classe de comprimento furcal, Lf mm, de <i>Lopholatilus villarii</i> com indicação do número de indivíduos medidos 190
Figura 61: Distribuição de freqüência por classe de comprimento furcal, Lf (mm) e curva de densidade gama das capturas de <i>Lopholatilus villarii</i> nas operações de pesca do B/P <i>Margus II</i>
Figura 62: Diagrama de dispersão dos resíduos do modelo da variação de comprimentos de <i>Lopholatilus villarii</i> nas operações do B/P <i>Margus II</i>
Figura 63: Deviância residual do modelo da variação de comprimentos de <i>Lopholatilus villarii</i> nas operações do B/P <i>Margus II</i> em função dos percentis da distribuição normal padrão
Figura 64: <i>Boxplot</i> do comprimento furcal, Lf (mm), de <i>Lopholatilus villarii</i> nas operações do B/P <i>Margus II</i> por faixa de longitude e estrato profundidade 192
Figura 65: <i>Boxplot</i> do comprimento furcal, Lf (mm), de <i>Lopholatilus villarii</i> nas operações do B/P <i>Margus II</i> por faixa de latitude e estrato profundidade
Figura 66: <i>Boxplot</i> do comprimento furcal, Lf (mm), de <i>Lopholatilus villarii</i> por categoria de sexo: fêmea (F), indeterminado (I) e macho (M) 194
Figura 67: <i>Boxplot</i> de peso total, Wt (g), de <i>Lopholatilus villarii</i> por categoria de sexo: fêmea (F), indeterminado (I) e macho (M)
Figura 68: Regressão linear do comprimento padrão, Ls (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i>
Figura 69: Diagrama de dispersão dos resíduos da regressão linear do comprimento padrão, Ls (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i>
Figura 70: Regressão linear do comprimento total, Lt (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i>
Figura 71: Diagrama de dispersão dos resíduos da regressão linear do comprimento total, Lt (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i>
Figura 72: Regressão de potência do peso total, Wt (g), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i>
Figura 73: Diagrama de dispersão dos resíduos do ajuste do peso total, Wt (g), sobre o comprimento furcal, Lf (mm), para sexos agrupados de <i>Lopholatilus villarii</i> 197
Figura 74: Proporção sexual de <i>Lopholatilus villarii</i> por classe de comprimento furcal, Lf (mm)

Figura 75: Proporção de fêmeas de <i>Lopholatilus villarii</i> juvenis e adultas por classe comprimento furcal, Lf (mm)
Figura 76: Proporção de machos de <i>Lopholatilus villarii</i> juvenis e adultos por classe comprimento furcal, Lf (mm)
Figura 77: Curva representativa da freqüência relativa acumulada de fêmeas adultas por classe de comprimento furcal, Lf (mm). A seta indica a estimativa do comprimento médio de primeira maturação gonadal
Figura 78: Curva representativa da freqüência relativa acumulada de machos adultos por classe de comprimento furcal, Lf (mm). A seta indica a estimativa do comprimento médio de primeira maturação gonadal
Figura 79: Freqüências bimestrais dos diferentes estádios de maturidade gonadal de fêmeas de <i>Lopholatilus villarii</i> . A: imaturo, B: em maturação, C: maduro, D: esvaziado
Figura 80: Variação bimestral do índice gonadossomático de fêmeas de <i>Lopholatilus villarii</i>
Figura 81: Variação bimestral dos fatores de condição alométrico calculados a partir do peso total (K1) e eviscerado (K2) de fêmeas de <i>Lopholatilus villarii</i>
Figura 82: Face proximal (A) e distal (B) do otólito <i>sagitta</i> direito de uma fêmea de <i>Lopholatilus villarii</i> de 655 mm de comprimento furcal
 Figura 83: Cortes transversais de otólitos de <i>Lopholatilus villarii</i>, vistos com luz transmitida. A) orientação e indicações das zonas opaca e translúcida de um otólito com seis anéis (zonas opacas) de uma fêmea de 358 mm de comprimento furcal e B) detalhe de um otólito com a indicação do eixo de medição dos 15 anéis de uma fêmea de 480 mm de comprimento furcal
Figura 84: Variação mensal das porcentagens de bordas opacas e translúcidas observadas em otólitos de <i>Lopholatilus villarii</i>
Figura 85: <i>Boxplot</i> e variação da média () do incremento marginal dos otólitos de <i>Lopholatilus villarii</i> por mês. Os números sobre a abscissa representam o número de otólitos analisados
Figura 86: Regressão logística do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para machos de <i>Lopholatilus villarii</i>
Figura 87: Diagrama de dispersão dos resíduos do ajuste do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para machos de <i>Lopholatilus villarii</i> . 205
Figura 88: Regressão logística do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para fêmeas de <i>Lopholatilus villarii</i>
Figura 89: Diagrama de dispersão dos resíduos do ajuste do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para fêmeas de <i>Lopholatilus villarii</i> . 206
Figura 90: Ajuste da equação de crescimento de von Bertalanffy sobre as médias de comprimento furcal, Lf (mm), de machos de <i>Lopholatilus villarii</i> retrocalculados à época de formação do anel etário

Figura 105: Estimativa do número de indivíduos desembarcados, por ano e por classe etária, de Lopholatilus villarii capturado ao largo da costa brasileira entre as Figura 106: Taxas de mortalidade por pesca (F) por classe etária e por ano estimadas pela análise de população virtual para Lopholatilus villarii da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (M) de 0,11 ano Figura 107: Número médio de indivíduos por classe etária e ano, estimados pela análise de população virtual para Lopholatilus villarii, ao largo da costa brasileira entre as Figura 108: Biomassa média (kg) por classe etária e ano, estimadas pela análise de população virtual para Lopholatilus villarii, ao largo da costa brasileira entre as Figura 109: Produção pesqueira (kg) por classe etária e ano, estimadas a partir dos resultados na análise de população virtual para Lopholatilus villarii, ao largo da Figura 110: Rendimento por recruta (Y/R em g), biomassa média por recruta (B/R em g) de Lopholatilus villarii, ao largo da costa brasileira entre as latitudes 22 e 28°S, em Figura 111: Rendimentos por recruta (Y/R g) para padrões de pesca com diferentes taxas de mortalidade por pesca (F) e idade de primeira captura (TC) para Lopholatilus villarii, ao largo da costa brasileira entre as latitudes 22 e 28°S...... 217 Figura 112: Rendimentos por recruta (Y/R g) para padrões de pesca com diferentes taxas de mortalidade por pesca (F) e natural (M) para Lopholatilus villarii, ao largo da Figura 113: Captura em número (milhares) e biomassa média (t) anual para diferentes fatores de multiplicação da mortalidade por pesca (F) estimados pelo modelo de Thompson e Bell para Lopholatilus villarii, ao largo da costa brasileira entre as

AGRADECIMENTOS

Ao Prof. Dr. Yasunobu Matsuura pela orientação, pelo exemplo de trabalho e por todo apoio e confiança dedicados a mim e a este estudo.

Ao Instituto de Pesca, nas pessoas do Dr. Evandro Severino Rodrigues, Dr. Carlos Arfelli e Sr. Lúcio Fagundes que, como diretores da unidade de Santos, deram pleno apoio ao desenvolvimento deste trabalho.

Ao Programa de Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva – Revizee, nas pessoas da Dra. Carmen L. D. B. Rossi-Wongtschowski (IOUSP), Coordenadora do Subcomitê Regional Sul, e da Dra. Maria Cristina Cergole (IBAMA), Coordenadora da Área de Dinâmica de Populações e Avaliação de Estoques dos Recursos Pesqueiros pelo apoio e sugestões dadas durante a execução de diversas fases deste estudo.

Ao Dr. Manuel Haimovici, professor da FURG e coordenador dos projetos "Prospecção Pesqueira com Espinhel-de-Fundo", "Dinâmica da Frota de Espinhel-de-Fundo nas Regiões Sudeste e Sul do Brasil" e "Levantamento/Refinamento de Dados Pretéritos de Cruzeiros de Pesquisa Pesqueira", realizados no contexto do Programa Revizee, pelo grande apoio, incentivo e preciosas sugestões dadas ao longo de sete anos de trabalho conjunto.

Ao Gastão César Cirino Bastos, pesquisador do Instituto de Pesca, pela cessão do material biológico e dos dados de amostras do peixe-batata obtidos nas operações do N/Pq *Orion* e, ainda, pelas ricas discussões sobre a pesca desta espécie e seus métodos de análise.

Ao Luiz Henrique Arantes, do IBAMA-RJ, pela atenção e disponibilização dos dados de desembarque das frotas de linha-de-fundo no Rio de Janeiro.

Ao Dr. Gilberto Paula, do Instituto de Matemática e Estatística da USP, pela orientação na aplicação de modelos lineares generalizados; à M.Sc. Sarah Dalle, da Universidade McGill, Canadá, pelo auxílio na aplicação de técnicas de análise multivariada; ao Dr. Henrik Gislason, do Instituto Dinamarquês para a Pesca e Pesquisa Marinha, pelo auxílio no desenvolvimento da análise de população virtual e ao Dr. José Pinheiro, dos Laboratórios Pharma-Novartis, EUA, pela orientação sobre a utilização de métodos de ajuste não lineares com dados correlacionados.

Aos colegas Marcus Henrique Carneiro, Acácio Ribeiro Tomás, Hélio Valentini, Cláudia Dardaque Mucinhato e Sergio Luiz dos Santos Tutui pelo apoio, companheirismo, participação e sugestões dadas ao longo do desenvolvimento deste trabalho.

Aos estagiários e ex-estagiários, muitos já colegas de profissão, (Mestre) André, Fabiana (Biba), Tatiana, Luiz Fernando (Caetano), Caio, Edson, Cintia, Fernanda, Bianca, Camila, Marcelo, Gustavo e Samantha pela participação nos embarques, amostragens, processamento de material, digitação de dados e, principalmente, pela paciência.

Aos professores Yasunobu Matsuura, Manuel Haimovici, Maria Cristina Cergole, Miguel Petrere Júnior e Carmen L. D. B. Rossi-Wongtschowski que, como membros titulares da comissão julgadora, fizeram de forma construtiva uma leitura crítica da pré-tese e apresentaram sugestões que contribuíram em muito para o aprimoramento do texto final desta tese.

Ao meu pai, Olintho da Silva, pela leitura do texto, pelas sugestões, pelo carinho e, acima de tudo, pelo exemplo de vida com que tenho sido brindado.

À Cintia, por todo seu amor, apoio, estímulo e paciência, que me foram tão necessários, nas mais diversas horas e nas mais variadas formas.

RESUMO

A pesca de linha-de-fundo ao largo da costa brasileira entre as latitudes 22 e 28°S foi analisada, com base em dados de cruzeiros de pesquisa e de desembarques da pesca comercial, com o objetivo de caracterizar as assembléias de peixes demersais vulneráveis, delinear a dinâmica das frotas pesqueiras e avaliar o impacto desta atividade sobre o estoque de Lopholatilus villarii, a espécie mais capturada. A análise de assembléia de peixes foi realizada a partir de dados de captura por unidade de esforço, obtidos em 303 operações realizadas a bordo do N/Pq Orion e do B/P Margus II, entre 1994 e 1997, quando foram capturados 57.956 espécimes, pertencentes a 43 espécies ou categorias e 31 famílias. Os gradientes de profundidade e de latitude foram os mais importantes na determinação da abundância e distribuição das espécies e provavelmente refletem o efeito das diferentes massas de água e tipos de fundo. L. villarii apresentou uma ampla distribuição e suas capturas foram associadas principalmente às de Epinephelus niveatus, Pseudopercis numida, Polyprion americanus e Urophycis cirrata. As frotas pesqueiras que explotam estas comunidades encontram-se baseadas em Niterói (RJ), Ubatuba e Santos (SP). Os dados de pesca obtidos entre 1995 e 1999 indicaram que esta pescaria é fortemente direcionada a poucas espécies-alvo, como L. villarii, P. numida, E. nivetus e Genidens barbus. A análise das taxas de captura de L. villarii através de modelos lineares generalizados demonstrou que a maior fonte de variação da CPUE é a frota pesqueira, sendo as de Niterói e Santos as mais produtivas. O estudo da dinâmica de população desta espécie mostrou uma longevidade de 40 anos. Os parâmetros de crescimento e os comprimentos de primeira maturação gonadal, para machos e fêmeas, foram respectivamente: Lf_{∞} = 1452 mm e 1210 mm; K = 0,044 e 0,038 ano⁻¹; t₀ = -0,723 e -2,082 anos; Lf_{50%}= 426 e 336 mm. O comprimento médio de captura diminuiu de 638 para 555 mm, entre 1994 e 1999, indicando que a captura foi voltada principalmente para indivíduos adultos. A taxa de mortalidade natural foi estimada em 0,11 ano⁻¹. A análise de população virtual e a aplicação dos modelos de rendimento-por-recruta de Beverton e Holt e o preditivo de Thompson e Bell, indicaram que o estoque tem sido intensamente explotado e está em estado de sobrepesca, com taxas de mortalidade por pesca muito superiores àqueles sugeridos por diferentes pontos de referência biológicos.

ABSTRACT

Aiming to characterize the vulnerable demersal fish assemblages, the description of the commercial bottom long-line fleet dynamics and the assessment of the impact of fisheries activities on the stock of Lopholatilus villarii (the most captured species), the bottom long-line fisheries along the Brazilian coast between 22 and 28°S latitude were analyzed based on research cruises and landings of commercial fishing boats. The fish assemblage analysis was performed based on catch per unit of effort data from 303 fishing operations conducted onboard of R/V Orion and the fishing boat Margus II between 1994 and 1997, when 57,956 specimens from 43 species or categories and 31 families were caught. The depth and latitude gradients were the most important factors determining the species abundance and distribution, probably reflecting the effects of different water masses and bottom type. L. villarii showed a broad distribution and its catches were associated mainly with Epinephelus niveatus, Pseudopercis numida, Polyprion americanus and Urophycis cirrata. The fleets that exploit these communities are based at the fishing ports of Niterói (RJ), Ubatuba and Santos (SP). The fisheries data obtained between 1995 and 1999 pointed out that this fishery is strongly directed to a few target-species as L. villarii, P. numida, E. nivetus and Genidens barbus. The analysis of the catch rate of L. villarii by means of generalized linear models showed that the main effect causing the CPUE variation is the fishing fleet, being the Niterói and Santos vessels the most productive. The study of the population dynamics of this species showed a longevity of 40 years. Growth parameters and length of first gonadal maturity, for males and females, were respectively: Lf_{∞} = 1452 mm and 1210 mm; K= 0.044 and 0.038 year⁻¹; t_0 = -0.723 and -2.082 years; $Lf_{50\%}$ = 426 and 336 mm. The mean length of capture decreased from 638 to 555 mm between 1994 and 1999, indicating that the catch mainly targeted adult fishes. The natural mortality rate was estimated as 0.11 year⁻¹. The virtual population analysis and the application of the Beverton and Holt yield-per-recruit and the Thompson and Bell predictive models showed that the stock has been heavily exploited and is under overfishing, with fishing mortality rates much higher than those suggested by different biological reference points.

1 INTRODUÇÃO

Os métodos de pesca com linha e anzol, como a linha-de-mão e os espinhéis verticais e de fundo, são classificados como métodos passivos e possuem características que satisfazem às premissas da pesca responsável, como seletividade de espécies e de comprimentos, alta qualidade do pescado, baixo consumo de energia e pouco impacto sobre o fundo oceânico (Bjordal e Løkkeborg, 1996).

A utilização destes métodos para a captura de peixes demersais na região do Arquipélago de Abrolhos, sul do Estado da Bahia, é uma das mais antigas do Brasil. A "pesca de Abrolhos" como é tradicionalmente conhecida pelos pescadores das regiões sudeste e sul, refere-se à captura de *Mycteroperca bonaci* (badejo), *Ocyurus chrysurus* (cioba) e *Epinephelus morio* (garoupa) com linha-de-mão entre as latitudes de 17 e 18°S. A "pesca de Mar Novo" representa uma expansão da área de atuação dos barcos linheiros, é realizada de 22 a 26°S e é dirigida aos peixes demersais *Epinephelus niveatus* (cherneverdadeiro), *Lopholatilus villarii* (peixe-batata) e *Pseudopercis numida* (namorado) e ao pelágico *Coryphaena hippurus* (dourado) (Zavala-Camín e Puzzi, 1974; Lima *et al.*, 1985; Paiva e Andrade, 1994, Paiva e Andrade-Tubino, 1998^a).

Relatos históricos indicam que a pesca da garoupa, abundante nos baixios de Abrolhos, era a principal fonte de renda da Capitania de Porto Seguro no início do século XVI e suportava uma indústria que exportava o peixe salgado e seco para o reino e para outras capitanias (Bueno, 1998). A "pesca de Abrolhos" como é conhecida atualmente, teve sua origem em fins do século XIX, introduzida pelos poveiros, portugueses da Póvoa do Varzim, vila de pescadores ao norte da cidade do Porto, que imigraram para o Brasil trazendo apetrechos de pesca e até embarcações a remo e a vela. Estabelecidos no Rio de Janeiro, os poveiros embarcavam em lanchas que os transportavam até os Abrolhos onde, passando para caíques, pescavam sozinhos à linha (Diegues, 1983).

Devido à maior proximidade dos pesqueiros, parte desta frota migrou para o porto de Vitória (Paiva e Andrade, 1994), de forma que na década de 70, a pesca de linha na região de Abrolhos já representava mais que 40% da produção total de pescado do Estado do Espírito Santo (Lima *et al.*, 1985).

A partir de 1973, alguns barcos sediados no Rio de Janeiro e em Santos passaram a explorar áreas próximas ao talude da plataforma continental ao sul do Cabo de Santa Marta Grande, onde é capturado o Polyprion americanus (cherne-poveiro) (Barcellos et al., 1991). A procura de novas áreas de pesca provavelmente está relacionada à tendência de queda nas produções anuais dos Estados do Rio de Janeiro e Espírito Santo ao longo dos anos 70 (Lima et al., 1985). Entre os anos de 1975 e 1977, através do Programa de Pesquisa e Desenvolvimento Pesqueiro do Brasil, da Superintendência do Desenvolvimento da Pesca (SUDEPE-PDP), foram realizados, ao largo da costa sul do Estado do Rio Grande do Sul, uma série de cruzeiros de pesca exploratória com espinhel-de-fundo que indicaram boas capturas de quatis (Lopholatilus villarii) e chernes (Epinephelus spp. e Polyprion americanus) (Santos e Rahn, 1978).

Ao longo do tempo e de acordo com o local e as espécies alvo, o aparelho de pesca utilizado pela frota comercial, sempre operado manualmente, sofreu diversas modificações. Variou da tradicional linha-de-mão, chamada de "pargueira", lançada por um pescador a partir de um bote, para diversos modelos de espinhéis verticais e de fundo (Santos *et al.*, 1988; Barcellos *et al.*, 1991; Peres e Haimovici, 1998).

No entanto, a principal modificação na estrutura e na forma de operação do aparelho foi introduzida em 1994, a partir das operações de pesca experimental realizadas pelo N/Pq *Orion*, do Instituto de Pesca do Estado de São Paulo, quando foi utilizado um espinhel-de-fundo com cabo principal de aço e operação por guincho hidráulico. Este padrão tecnológico foi adotado por parte das frotas de Santa Catarina, Rio Grande do Sul e Rio de Janeiro para a captura de chernes, de *Lopholatilus villarii* e de *Pseudopercis numida* (Tiago *et al.*, 1995; Ávila-da-Silva e Bastos, 1999; Ávila-da-Silva *et al.*, 2001). Cabe ressaltar que a introdução de uma inovação não excluiu a utilização de apetrechos com características mais simples e atualmente pode-se observar embarcações operando com todos os tipos de linha-de-fundo citados. No presente trabalho o termo "linha-de-fundo" é usado como referência genérica a

todas as modalidades de pesca de peixes demersais baseadas na utilização de linha e anzol.

Lopholatilus villarii tem sido a espécie mais capturada pelos métodos de linha-de-fundo na região sudeste do Brasil desde o início dos registros de desembarques na década de 70. Sua pesca pela frota comercial encontra-se descrita para as regiões sudeste e sul do Brasil ao longo da plataforma continental externa e talude superior (Zavala-Camin e Puzzi, 1974; Lima *et al.* 1985; Barcelos *et al.*, 1991; Paiva e Andrade, 1994; Paiva e Fonteles-Filho, 1997; Haimovici, 1997; Paiva e Andrade-Tubino, 1998^a, Paiva e Andrade-Tubino^b, 1998; Ávila-da-Silva *et al.*, 2001). Recentemente sua ocorrência também foi registrada ao largo das costas dos Estados do Rio Grande do norte a Sergipe (Alencar *et al.*, 1998).

A despeito de sua importância pesqueira, poucos trabalhos sobre a biologia desta espécie estão disponíveis. Estudos sobre o crescimento de *Lopholatilus villarii* foram realizados por Carvalho *et al.* (1998), a partir de amostras de escamas obtidas nos desembarques de Niterói (RJ), e por Leite-Jr. (1999), a partir de amostras de otólitos de espécimes capturados no sul do Brasil. Alencar *et al.* (1998) estudaram as características biométricas desta espécie ao largo da costa nordeste do Brasil. Estes trabalhos caracterizam a espécie como um peixe gonocorista demersal que atinge até 107 cm de comprimento furcal e uma estimativa de longevidade de 41 anos.

Uma espécie congenérica, *Lopholatilus chamaeleonticeps*, que se distribui ao longo da plataforma continental externa entre Nova Escócia, Canadá, ao Suriname, costa norte da América do Sul em profundidades de 76 a 457 m (Freeman e Turner, 1977; Turner, 1986; Grimes e Turner, 1999; Steimle *et al.*, 1999), é capturada pela frota pesqueira americana desde 1879 (Mericas, 1978). Com um ciclo de vida considerado peculiar por suas características de alta longevidade, crescimento lento, complexo sistema de acasalamento e preferências ambientais restritas, de fácil localização pelos sistemas de navegação das embarcações pesqueiras, tem sido alvo de uma pescaria que mostra ciclos de 20 a 25 anos de rápido aumento nos desembarques e igualmente rápido declínio da captura para níveis muito baixos (Grimes e Turner, 1999). Medidas bastante conservativas, incluindo a delimitação de Áreas de Proteção Marinha, a diminuição do esforço pesqueiro dirigido, a

implantação do sistema de quotas de captura e limites de tamanho de captura, têm sido sugeridas para o manejo da pesca desta e de outras espécies de que constituem o chamado Complexo Cherne-Vermelho (*Grouper-Snapper*) (Hightower e Grossman, 1989; Parker e Mays, 1998; Coleman *et al.*, 2000).

2 OBJETIVOS

O presente trabalho visa o estudo da pescaria de linha-de-fundo no período de 1995 a 1999, no trecho da costa brasileira compreendida entre o Cabo de São Tomé (22°S), norte do Estado do Rio de Janeiro, e as proximidades do Cabo de Santa Marta Grande (28°S), com especial atenção à pesca de *Lopholatilus villarii*, principal espécie capturada.

A condução das análises é realizada a partir de três ângulos distintos que, em conjunto, fornecem uma visão ampla da estrutura das comunidades vulneráveis ao método de pesca de linha-de-fundo, da forma de atuação das principais frotas pesqueiras sobre estes estoques e, de forma específica, do impacto desta atividade sobre o estoque de *Lopholatilus villarii*.

Inicialmente é descrita a estrutura das comunidades vulneráveis à pesca com linha-de-fundo através da análise da interação tecnológica observada. Esta análise visa enfatizar o caráter multi-específico da pescaria, mostrando que diferentes espécies são capturadas em conjunto e que as associações observadas estão relacionadas às características ambientais da área de pesca. Posteriormente, a atividade pesqueira comercial é estudada com o objetivo de delinear a forma com que o homem tem explotado as comunidades de peixes demersais e, finalmente, é realizado o estudo da dinâmica de população e a avaliação do impacto da pesca de linha-de-fundo sobre o estoque de *Lopholatilus villarii*.

3 ÁREA DE ESTUDO

A área estudada abrange a região da costa brasileira entre o Cabo de São Tomé, 22°S, Estado do Rio de Janeiro, e as proximidades do Cabo de Santa Marta Grande, 28°S, Estado de Santa Catarina (Figura 1), até a isóbata de 500 m.

Esta região corresponde em sua maior parte à Plataforma Continental Sudeste e ao talude superior adjacente. Localizada entre o Cabo Frio (23°S) e o Cabo de Santa Marta Grande (28°40'S), esta plataforma tem aproximadamente 1100 km de linha de costa em formato côncavo. Possui de forma geral uma topografia regular, com a zona de quebra entre 120 e 180 m de profundidade. Em sua parte central atinge 230 km de extensão, estreitado-se para 50 km nas proximidades de Cabo Frio e para 70 km no Cabo de Santa Marta Grande (Castro e Miranda, 1998).

As massas de água presentes na área de estudo são resultantes da mistura entre a Água Tropical (AT), quente e salina (T>20°C e S>36,4; Miranda, 1982), transportada para o sul-sudoeste na camada superior da corrente do Brasil (CB; 0-200 m), sobre o talude nas proximidades da quebra da plataforma; a Água Central do Atlântico Sul (ACAS), relativamente fria (6°C<T<20°S e 34.5<S<36; Miranda, 1985) transportada também para o sulsudoeste ao longo do talude continental na camada inferior da CB (200-500 m) e a Água Costeira (AC), quente (T>24°C) e de baixa salinidade, resultado da mistura da descarga continental de água doce com as águas da plataforma continental (Castro e Miranda, 1998). As porções mais profundas da área de estudo também podem receber influência da Água Intermediária Antártica (AIA, 3°C<T<6°C e 34<S<34,5), presente entre 500 e 1200 m de profundidade (Stramma e England, 1999). Seu fluxo originário de leste atinge o talude continental sudeste do Brasil e divide-se em dois ramos. Um ramo gira em direção sul a cerca de 28°S e o outro, que segue em direção norte, se estabelece como uma corrente de contorno a partir de 24°S (Müller et al., 1998).

Um marcante padrão sazonal de circulação nesta região é a intrusão da ACAS nas épocas de fim de primavera e verão e seu recolhimento junto à margem externa da plataforma continental no outono, inverno e início de primavera (Matsuura, 1986). Existe ainda, sobre a plataforma externa, a

ocorrência de vórtices ciclônicos relacionados aos meandros da CB, que transportam a ACAS até a zona fótica, resultando em um aumento considerável da biomassa de fitoplâncton na camada de mistura (Pires-Vanin e Matsuura, 1993).

Em termos de feições topográficas, a plataforma continental entre o Cabo Frio e a Ilha de São Sebastião apresenta linhas batimétricas paralelas à costa e chega a 200 m de profundidade. A plataforma nesta área apresenta dois níveis distintos, separados por uma escarpa arenosa em torno da isóbata de 100 m. O nível superior é mais irregular e inclinado, enquanto o inferior estende-se como um terraço horizontal, marcado por irregularidades até a zona de quebra, onde passa suavemente para o talude continental (Alves e Ponzi, 1984). A porção sul da área de estudo apresenta um declive mais suave e homogêneo (Zembruscki, 1979) sendo que entre a Ilha de São Sebastião (23°50'S) e o Cabo de Santa Marta ocorre o embaiamento máximo da plataforma continental das regiões sudeste e sul do Brasil (Figueiredo e Madureira, 1999).

Na região do talude ocorrem 5 platôs entre 100 e 1000 m, situados ao largo do Cabo de São Tomé (22°00'S), de Cabo Frio (23°00'S), de Santos (24°00'S), de Paranaguá (25°30'S) e de Florianópolis (27°40'S). Nos dois últimos, a face sul é a mais íngreme e nos restantes a face norte é a mais abrupta, o que indica a existência de condições favoráveis ao acúmulo de sedimentos entre Santos e Paranaguá, região onde a plataforma atinge sua extensão máxima. A área de talude com maiores irregularidades corresponde à face norte do platô de Santos, provavelmente devido à presença de canhões ou cicatrizes de deslizamentos (Figueiredo e Madureira, 1999).

A distribuição de sedimentos também define distintos ambientes ao longo da costa. Ao norte de Cabo Frio há o predomínio de sedimentos de maior granulometria, como cascalho e areia cascalhosa. Entre Cabo Frio e Santos ocorre uma ampla distribuição de areias, com bolsões de areia lamosa e de lama arenosa na plataforma continental média nas proximidades da Baía de Ilha Grande. A partir da Ilha de São Sebastião para o sul as lamas passam a predominar em toda a extensão da plataforma continental externa e média. A plataforma interna desta área é recoberta predominantemente por sedimentos de granulometria de areia. O talude continental apresenta, de modo geral, predomínio das lamas com ocorrência de lamas arenosas em regiões próximas à quebra da plataforma continental (Figueiredo e Madureira, 1999).

Da região de Cabo Frio à Ilha de São Sebastião, sedimentos de composição bioclástica, com mais de 70% de carbonatos, distribuem-se em grandes faixas contínuas sobre a plataforma continental externa e estendem-se em direção às plataformas média e interna. Estes sedimentos ocorrem associados a sedimentos litobioclásticos (porcentagem de carbonatos entre 50% e 70%) e a manchas isoladas de sedimentos biolitoclásticos (porcentagem de carbonatos entre 30% e 50%). Ao sul de São Sebastião ocorrem sedimentos litoclásticos (porcentagem de carbonatos inferior a 30%) passando a sedimentos biolitoclásticos nas partes mais profundas (Figueiredo e Madureira, 1999).

4 MATERIAL E MÉTODOS

4.1 MÉTODOS DE AMOSTRAGEM E DE OBTENÇÃO DE DADOS

O material utilizado nas diversas etapas deste trabalho foi obtido através de cruzeiros de pesquisa pesqueira realizados com o N/Pq *Orion*, do Instituto de Pesca, com o B/P *Margus II*, barco pesqueiro arrendado pelo Subcomitê Regional Sul do Programa de Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva - REVIZEE, e através do acompanhamento dos desembarques da frota comercial dos Estados do Rio de Janeiro e São Paulo.

Dos cruzeiros de pesquisa foram utilizados dados de captura e esforço por operação de pesca e, especificamente para *Lopholatilus villarii*, informações sobre características biométricas e biológicas e amostras de otólitos *sagittae*. No acompanhamento da atividade da frota comercial foram obtidos dados de captura e esforço de pesca por cruzeiro e amostras biométricas.

O N/Pq *Orion* realizou pescarias exploratórias com espinhel-de-fundo de abril de 1994 a maio de 1995, entre os paralelos 19 e 28°S, ao largo das costas dos Estados do Espírito Santo, Rio de Janeiro, São Paulo, Paraná e Santa Catarina, quando executou 311 operações de pesca. Seu aparelho era operado através de guincho hidráulico e consistia em um cabo principal de aço com diâmetro de 1/8", cabos secundários de náilon monofilamento de 2 mm de diâmetro e 90 cm de comprimento e anzóis circulares Mustad 13/0 iscados com calamar (*Illex argentinus*). As operações de pesca eram realizadas em período diurno, com um tempo de imersão do aparelho variando de 1 a 5 horas e com a utilização de 500 a 1500 anzóis (Tiago *et al.*, 1995, Tutui *et al.*, 2000). No presente estudo, foram considerados os dados de 197 operações de pesca realizadas entre os paralelos 22 e 28°S e entre as isóbatas de 100 a 500 m (Tabela 1, Figuras 1 e 3).

O B/P Margus *II* foi utilizado no projeto "Prospecção Pesqueira com Espinhel de Fundo", desenvolvido com o apoio do Programa REVIZEE, para a execução de dois cruzeiros realizados nos meses de agosto a outubro de 1996 e de abril a junho de 1997, denominados de cruzeiros de primavera e de outono respectivamente. O aparelho de pesca utilizado foi idêntico ao descrito

para o N/Pq *Orion.* As 94 operações de pesca realizadas por cruzeiro foram distribuídas ao longo de 18 perfis traçados perpendicularmente à costa e distantes entre si em 52 milhas náuticas, entre o Cabo de São Tomé (22°S), Estado do Rio de Janeiro, e o Chuí (34°40'S), Estado do Rio Grande do Sul, e entre as isóbatas de 100 e 500 m (Haimovici *et al.*, 1998). Deste projeto foram utilizadas informações e material biológico de 106 operações de pesca realizadas entre os paralelos 22 e 28°S (Tabela 2 e Figuras 2 e 4).

Durante a execução dos cruzeiros de pesquisa eram anotados a cada operação de pesca os horários, as posições e as profundidades do início e término do lançamento e do recolhimento do espinhel-de-fundo. Durante o recolhimento do aparelho, o número de anzóis era contado e os espécimes capturados identificados, medidos em seu comprimento total (*Lt*), etiquetados e preservados em gelo.

Na ocasião do desembarque era realizada a triagem do pescado para a obtenção dos comprimentos padrão (*Ls*), furcal (*Lf*) e total (*Lt*), e dos pesos total (*Wt*), eviscerado (*Wb*) e das gônadas (*Wg*). As medidas de comprimento foram tomadas em milímetros com aproximação ao milímetro inferior mais próximo, as de peso do corpo (total e eviscerado) em gramas e o peso das gônadas em centésimo de grama. O par de otólitos *sagittae* foi retirado e as gônadas classificadas macroscopicamente por sexo (macho, fêmea ou indeterminado) e grau de maturação seguindo a escala proposta por Vazzoler (1996):

- imaturoOvários filiformes, translúcidos, de tamanho reduzido, com ovidutos longos e sem sinais de vascularização, não sendo possível a observação de ovócitos. Testículos filiformes e translúcidos.
- em maturaçãoOvários dilatados com ovidutos mais curtos e exibindo intensa rede capilar. É possível a observação de grânulos opacos (ovócitos) pequenos e médios. Testículos desenvolvidos com forma lobulada.
- maduro......Ovários túrgidos ocupando grande parte da cavidade celomática. Observam-se ovócitos grandes, opacos e ou translúcidos. Testículos também túrgidos e esbraquiçados com esperma fluindo sob leve pressão.

desovado.....Ovários reduzidos em relação ao estádio anterior e em diferentes graus de flacidez, com membranas distendidas e aspecto hemorrágico. Testículos também flácidos e de aspecto hemorrágico.

O acompanhamento da atividade pesqueira da frota comercial de linhade-fundo foi realizado com base nos registros de desembarque dos municípios de Niterói, Estado do Rio de Janeiro, Ubatuba e Santos, Estado de São Paulo, nos anos de 1995 a 1999. Os dados referentes ao Estado do Rio de Janeiro foram registrados pelo IBAMA-RJ, que disponibilizou os mapas de bordo e as fichas de desembarque para os anos de 1996 a 1999 e a totalização das capturas mensais por espécie para 1995. Os dados de desembarque no Estado de São Paulo foram disponibilizados através do sistema gerenciador de banco de dados de controle estatístico de produção pesqueira marítima ProPesq (Ávila-da-Silva et al., 1999) do Instituto de Pesca de São Paulo. Para cada desembarque, sempre que possível, foram tomadas informações sobre o nome da embarcação, as datas e portos de saída e chegada, os dias efetivos de pesca, a área de pesca e a captura por espécie. Nos portos pesqueiros de Santos e Guarujá também foram obtidas amostras biométricas de Lopholatilus villarii durante os desembarques realizados entre 1996 e 1999. Nestes maior número desembarques, 0 possível de espécimes, tomados aleatoriamente, eram medidos em seu comprimento furcal, com aproximação ao milímetro inferior mais próximo.

De forma geral, as análises estatísticas foram efetuadas através do programa computacional R (Ihaka e Gentleman, 1996). Outros programas empregados em análises específicas são identificados no contexto de sua utilização.

Para descrever conjuntos de dados utilizaram-se histogramas e curvas de densidade. A freqüência relativa de uma determinada classe pode ser obtida multiplicando o intervalo de classe por sua densidade. Outra técnica gráfica utilizada foi a da representação dos dados através de *boxplots*. Nestes, o traço horizontal indica a mediana, os limites inferior e superior da caixa representam os quartis de 25 (*Q1*) e 75% (*Q3*). A linha vertical indica a amplitude dos valores até os limites dados por:

Q1-1,5×(Q3-Q1) e Q3+1,5×(Q3-Q1)

Os pontos fora destes limites são considerados *outliers* e são representados por um círculo (The R Development Core Team, 2002).

Para diagnosticar a adequação de diversos modelos aos dados observados foram utilizados gráficos de probabilidade normal (*Q-Q plots*) dos resíduos. Mais adequados do que os histogramas para verificar normalidade de dados obtidos aleatoriamente, os gráficos de probabilidade normal marcam os quartis dos dados, no caso, dos resíduos, contra os quartis correspondentes da distribuição normal padrão.

A seguir são apresentados detalhadamente os métodos de análise utilizados nas diferentes etapas do estudo.

4.2 DISTRIBUIÇÃO, ABUNDÂNCIA E ASSOCIAÇÃO DE ESPÉCIES

O estudo da diversidade, da distribuição, da abundância e da associação entre as espécies vulneráveis ao método de pesca de espinhel-de-fundo foi realizado com base nos dados de captura e esforço reportados nos cruzeiros do N/Pq *Orion* e do B/P *Margus II*.

A captura por unidade de esforço (*CPUE*), utilizada como medida de abundância relativa, foi calculada por espécie e por operação de pesca. A unidade de esforço (*E*) empregada foi calculada pelo número de anzóis recolhidos (*A*) dividido por 1000 e multiplicado pelo tempo médio de imersão do aparelho (*IM*). Desta forma, a *CPUE* foi calculada em termos de número de indivíduos por 1000 anzóis-hora (n/1000ah) seguindo as equações:

$$IM_{i} = \left(\frac{HLf_{i} - HLi_{i}}{2}\right) + \left(HRi_{i} - HLf_{i}\right) + \left(\frac{HRf_{i} - HRi_{i}}{2}\right)$$
$$E_{i} = \frac{A_{i}}{1000} \times IM_{i}$$
$$CPUE_{i} = \frac{N_{i}}{E_{i}}$$
$$CPUE_{s,i} = \frac{N_{s,i}}{E_{i}}$$
onde: *i* = índice da operação de pesca

s = índice da espécie

HLf = hora do final do lançamento do aparelho

- *HLi* = hora do início do lançamento do aparelho
- *HRf* = hora do final do recolhimento do aparelho
- *HRi* = hora do início do recolhimento do aparelho
- *IM* = tempo de imersão

Para as operações de pesca do B/P *Margus II* também foram calculados os índices estatísticos de informação de diversidade de Shannon (H') e de equitatividade de Pielou (E_q) de acordo com as funções (Magurran, 1988):

$$H'_{i} = -\sum p_{s,i} \ln p_{s,i}$$
$$Eq_{i} = \frac{H'_{i}}{\ln S_{i}}$$

onde: *i* = índice da operação de pesca

s = índice da espécie

p = abundância relativa

S = número de espécies

As variações de *CPUE*, *H*' e E_q foram analisadas através do ajuste de modelos lineares generalizados e de sua deviância (McCullagh e Nelder, 1989; Hastie e Pregibon, 1997; Venables e Ripley, 1997). Foram testados os efeitos das variáveis contínuas latitude, profundidade e, nos dados de pesca do *Margus II*, a variável categórica cruzeiro com os níveis primavera e outono.

Os modelos lineares generalizados, utilizados em diversas etapas deste trabalho, permitem o estudo de padrões sistemáticos de variação de forma semelhante aos modelos lineares utilizados para o estudo de efeitos conjuntos de tratamentos e covariáveis (McCullagh e Nelder, 1989). A aplicação destes modelos é oportuna quando os dados analisados não apresentam réplicas, ou um número igual de observações por categoria ou não têm distribuição normal. A classe dos modelos lineares generalizados inclui distribuições como a exponencial e a gama, úteis para análise destes dados (McCullagh e Nelder, 1989; Zar, 1996). Sua aplicação tem sido recomendada para a análise e padronização dos dados de pesca, principalmente da frota comercial (Hilborn e Walters, 1992, Quinn e Deriso, 1999, Lima *et al.*, 2000; Lassen e Medley, 2001).

A adequação da escolha da função de distribuição para descrição da variável resposta foi verificada através da prova de aderência de Kolmogorov-Smirnov (KS) (Siegel, 1975; Zar, 1996), pelo ajuste dos parâmetros da distribuição sobre o gráfico de densidade, pela plotagem de gráficos do desvio residual sobre os valores ajustados da variável resposta e sobre os quartis da curva normal padrão e pela verificação da normalidade da distribuição dos resíduos através do teste de Shapiro-Wilks. A significância das variáveis explicativas foi testada através do teste "F" (Venables e Ripley, 1997).

Com o objetivo de facilitar a visualização gráfica e tabular dos efeitos das variáveis contínuas latitude e profundidade, estas foram categorizadas em faixas de um grau e estratos de 200 m (100-300 e 300-500 m). A significância da variação da *CPUE* média obtida pelo B/P *Margus II* para as principais espécies-alvo, entre os cruzeiros e por classe de latitude, no mesmo estrato de profundidade, foi verificada através do teste t pareado (Zar, 1996).

A análise das associações de espécies observadas nas capturas de espinhel-de-fundo foi conduzida através da aplicação de métodos multivariados de classificação e ordenação.

A seleção das espécies para estas análises foi baseada no número absoluto de indivíduos capturados por espécie (N_s) e na freqüência relativa de ocorrência da espécie nas operações de pesca (Fr_s), calculada da seguinte forma:

$$Fr_s = \frac{N_s}{Np}$$

onde: *s* = índice da espécie

N = número de indivíduos capturados

Np = número total de operações de pesca

Foram selecionadas as espécies que apresentaram uma freqüência relativa de ocorrência (Fr_s) de 5% ou mais, e um número (N_s) de, pelo menos, dez indivíduos capturados nas campanhas do N/Pq *Orion* e B/P *Margus II*, separadamente. As matrizes biológicas utilizadas para as análises subseqüentes contiveram dados transformados de *CPUE* (log(*CPUE_{s,i}*+1)) por espécie e operação de pesca.

Primeiramente utilizou-se o método de classificação hierárquica divisiva Análise Indicadora em Duas Vias (*Two Way INdicator SPecies ANalysis* -TWINSPAN) (Hill, 1979), implementado pelo programa PC-ORD para Windows versão 3.20 (McCune e Mefford, 1997), para identificar os conjuntos de operações de pesca com composição de captura semelhante e os grupos de espécies com mesmo padrão de ocorrência.

Os dados de pesca do N/Pq *Orion* e os dados dos cruzeiros de primavera e outono do B/P *Margus II* foram analisados separadamente. Para cada um dos três conjuntos de dados foram selecionados seis níveis de corte para a determinação das pseudo-espécies, de forma que cada nível tivesse um número aproximadamente igual de valores de $log(CPUE_{s,i}+1)$. A validação das espécies como indicadoras dos grupos de operações de pesca identificados foi obtida através da Análise de Espécies Indicadoras (*Indicator Species Analysis*) (Dufrêne e Legendre, 1997).

A Análise Canônica de Correspondência (ACC), técnica de ordenação de gradiente direta multivariada, implementada através do programa CANOCO para Windows versão 4 (ter Braak, 1986, 1988 e 1995; Legendre e Legendre, 1998), foi utilizada para detectar os padrões de variação da abundância das espécies selecionadas nos cruzeiros de pesquisa e sua relação com o meio. As variáveis ambientais utilizadas para caracterizar as operações de pesca foram a profundidade e o posicionamento geográfico (latitude e longitude). Para cada análise, procedia-se a seleção destas variáveis para inclusão no modelo, de acordo com seu nível de significância no teste de Monte Carlo após 9999 permutações. Apenas aquelas com valores-*P* menores ou iguais a cinco centésimos foram consideradas. Testes de permutação irrestrita sob o modelo completo também foram aplicados para verificar as significâncias das relações canônicas entre a matriz biológica e a ambiental referente ao primeiro eixo canônico e ao conjunto dos mesmos (Legendre e Legendre, 1998).

A projeção do primeiro eixo canônico sobre o mapa da área de estudo foi obtida a partir da interpolação dos escores ajustados das operações de pesca pelo método *kriging*, utilizando o programa Surfer versão 7.02 (Golden Software). Estes escores representam os valores ajustados da regressão múltipla projetada no primeiro eixo (Legendre e Legendre, 1998).
Uma análise conjunta dos dados de pesca dos cruzeiros de primavera e outono do N/P *Margus II* foi realizada para identificar os padrões de deslocamento sazonal das espécies.

4.3 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL

A análise da atividade da frota pesqueira de linha-de-fundo foi realizada com base nos dados de desembarque obtidos nos portos de Niterói, Ubatuba e Santos nos anos de 1996 a 1999. Com o objetivo de evitar duplicidade de informações, em algumas análises, as embarcações registradas foram agrupadas em categorias de frota (Niterói, Ubatuba ou Santos) de acordo com o porto de desembarque mais freqüente. Ainda, considerando a diversidade das capturas e das técnicas de pesca de linha e anzol, definiu-se como cruzeiro direcionado para peixes demersais aquele cuja captura destas espécies tenha correspondido a pelo menos 50% do total desembarcado (Butterworth *et al.*, 1989). A unidade de esforço de pesca utilizada para as análises das frotas comerciais foi o número efetivo de dias de pesca por viagem.

O grau de direcionamento das pescarias, por ano e por porto de desembarque, sobre cada uma das principais espécies foi avaliado pela freqüência de cruzeiros em que estas espécies representavam um determinado percentual nas capturas. Para tal, utilizou-se o método proposto por Biseau (1998), seguindo as etapas:

- 1. Cálculo da porcentagem da espécie (*s*) no cruzeiro (*i*): $C_{i,s} = \frac{T_{i,s}}{T_{i,r}}$
- Cálculo do nível de qualificação (NQ): j = valor truncado de C_{i,s} (j = valores inteiros de 0 a 100)
- 3. Soma dos desembarques da espécie s por nível de qualificação (j):

$$TC_{j,s} = \sum_{i=1}^{n} \alpha_{i,j,s} \times T_{i,s}$$
$$com \begin{cases} \alpha_{i,j,s} = 1 & \text{se } C_{i,s} = j \\ \alpha_{i,j,s} = 0 & \text{se } C_{i,s} \neq j \end{cases}$$

 Contribuição relativa acumulada dos cruzeiros por nível de qualificação no desembarque total da espécie:

$$P_{j,s} = \frac{\sum_{k=0}^{j} TC_{k,s}}{T_{..,s}}$$

Onde: *s* = índice da espécie

- *i* = índice do cruzeiro
- *n* = número total de cruzeiros
- $T_{i,s}$ = desembarque da espécie no cruzeiro
- $T_{i,.}$ = desembarque total no cruzeiro
- $T_{...s}$ = desembarque total da espécie em todos os cruzeiros

O nível de qualificação (*NQ*) calculado para assegurar uma determinada porcentagem de cruzeiros, chamada de nível explicativo (*NE*), denomina-se nível explicativo de qualificação (*NEQ*). Uma vez estabelecido o *NE*, o *NEQ* corresponderá ao valor de *NQ* em que $P_{i,s}$ seja igual a 1-NE.

A análise da pesca de *Lopholatilus villarii*, principal espécie capturada, foi realizada com base nos dados de captura e esforço pesqueiro de cruzeiros realizados nos anos de 1996 a 1999, entre os paralelos 22 e 28°S, com informações completas sobre o período do cruzeiro, dias efetivos de pesca, área de operação e um nível de qualificação para a espécie (*NQ*) ajustado por porto e ano, de forma a garantir um nível explicativo de 80%.

A variação da captura por unidade de esforço (*CPUE*) por cruzeiro, expressa em quilogramas por dia efetivo de pesca, foi analisada em função dos fatores frota (Niterói, Ubatuba, Santos), ano (1996 a 1999), trimestre (1, 2, 3 e 4), faixas de latitude (de 22° a 28°S em intervalos de 2°) e de longitude (40° a 50°W em intervalos de 2°), através do ajuste de modelos lineares generalizados (McCullagh e Nelder, 1989; Hilborn e Walters, 1992; Quinn e Deriso, 1999; Lassen e Medley, 2001). Devido à forma assimétrica da distribuição da *CPUE*, foram testados modelos das famílias gama e log-normal. O modelo final foi selecionado através do método *stepwise*, no qual os termos e suas interações são adicionados ou removidos, de acordo com o valor da estatística da razão de verossimilhança para dois modelos gama (Paula, 2000).

4.4 DINÂMICA POPULACIONAL DE Lopholatilus villarii

4.4.1 ESTRUTURA DE COMPRIMENTOS

A estrutura de comprimentos das capturas de *Lopholatilus villarii* foi estudada com base em amostragens obtidas a bordo do N/Pq *Orion*, do B/P *Margus II* e durante o desembarque de embarcações da frota comercial em Santos e Guarujá, São Paulo. Foram consideradas apenas as capturas realizadas entre os paralelos 22° e 28°S.

A curva de captura para os anos agrupados foi descrita através da equação logística

 $P = 1/[1 + e^{-r(Lf - Lc)}]$

onde: *P* = freqüência relativa acumulada esperada para espécimes capturados em determinado comprimento furcal (*Lf*)

r = constante de curvatura

Lf= comprimento furcal avaliado

Lc = comprimento médio de captura

Os parâmetros desta equação foram ajustados pelo método não linear dos mínimos quadrados (King, 1995; Venables e Ripley, 1997).

A significância da variação da composição anual de comprimentos foi verificada através dos testes de análise de variância (ANOVA) e de Kruskal-Wallis. A análise de variância também foi utilizada para testar a significância da variação linear dos valores médios e medianos em função do ano (Siegel, 1975; Zar, 1996; Venables e Ripley, 1997).

O efeito das variações da latitude, da longitude e da profundidade sobre o comprimento furcal foi testado através do ajuste de modelos lineares generalizados e de sua deviância (McCullagh e Nelder, 1989; Hastie e Pregibon, 1997; Venables e Ripley, 1997). O procedimento de escolha da função de distribuição e da verificação da significância das variáveis seguiu as etapas já descritas nos itens 4.2 e 4.3.

4.4.2 RELAÇÕES BIOMÉTRICAS

As análises sobre as características biométricas de *Lopholatilus villarii* foram realizadas com base nos dados de 1588 espécimes amostrados nos

desembarques durante as capturas com espinhel-de-fundo dos cruzeiros de pesquisa pesqueira conduzidos à bordo do N/Pq *Orion* e do B/P *Margus II*.

As medidas de comprimento e peso foram comparadas por sexo através do teste paramétrico t e do não paramétrico Wilcoxon-Mann-Whitney, adiante referido como teste de Wilcoxon (Siegel, 1975; Zar, 1996; Venables e Ripley, 1997).

As relações entre o comprimento furcal e os comprimentos padrão e total foram descritas através de modelos lineares (y= a+bx) e a relação entre o comprimento furcal e o peso total através do modelo de potência (y = ax^b), ajustado pelo método não linear de mínimos quadrados. A significância da diferença entre os coeficientes das regressões lineares obtidas para cada sexo foi comparada através na análise de covariância - ANCOVA (Zar, 1996; Venables e Ripley, 1997; Faraway, 2000). As curvas comprimento-peso obtidas por sexo foram comparadas através da razão de verossimilhança máxima (Kimura, 1980; Cerrato, 1990).

4.4.3 CICLO REPRODUTIVO

O ciclo reprodutivo de *Lopholatilus villarii* foi investigado a partir dos dados de comprimento furcal, pesos total e eviscerado, peso das gônadas e estágio de maturação gonadal dos 1588 espécimes coletados nos desembarques dos cruzeiros de pesquisa do N/Pq *Orion* e do B/P *Margus II*.

A composição sexual da população foi descrita pelo número relativo de machos e fêmeas por classe de comprimento furcal e no total da amostra. As diferenças estatisticamente significativas foram indicadas através do teste de chi-quadrado, χ^2 (Zar, 1996; Vazzoler, 1996).

O comprimento furcal médio de primeira maturação gonadal foi estimado para machos e fêmeas através do ajuste não linear dos mínimos quadrados dos parâmetros da curva logística (King, 1995)

 $P = 1/[1 + e^{-r(Lf - Lc)}]$

onde: *P* = porcentagem esperada de espécimes adultos associada a determinado comprimento furcal (*Lf*)

r = constante de curvatura

Lc = comprimento médio de primeira maturação

O ciclo de atividade reprodutiva das fêmeas foi estudado através da periodicidade de ocorrência dos diferentes estágios de maturidade gonadal e das variações bimestrais do índice gonadossomático (IG) e dos fatores de condição baseados no peso total (K1) e no peso eviscerado (K2), de acordo com as equações sugeridas por Vazzoler (1996)

$$IG = \frac{Wg}{Wt}$$

$$K1 = \frac{Wt}{Lf^{b}}$$

$$K2 = \frac{Wb}{Lf^{b}}$$

onde: Wg = peso das gônadas

Wt = peso total do corpo

Wb = peso do corpo eviscerado

Lf = comprimento furcal

b = expoente da relação comprimento-peso (*Wt*= aLf^{b})

4.4.4 IDADE E CRESCIMENTO

Para o estudo do crescimento foram analisados os otólitos sagitais (*sagittae*) de 348 indivíduos, 178 fêmeas e 170 machos, capturados durante os cruzeiros de pesquisa pesqueira do N/Pq *Orion* (184) e B/P *Margus II* (164). Todo o material oriundo das campanhas do N/Pq *Orion*, que apresentaram uma melhor distribuição temporal, foi utilizado. Os 164 peixes provenientes dos cruzeiros do B/P *Margus II* foram selecionados de forma a complementar o número de otólitos por classe de comprimento furcal. Para a descrição da estrutura dos otólitos (Figuras 82 e 83) adotou-se a nomenclatura proposta por Secor, *et al.* (1995).

Os otólitos direito e esquerdo de cada peixe foram medidos em seu comprimento e altura. A significância da diferença observada por indivíduo foi testada para cada sexo separadamente através do teste t e de Wilcoxon pareados (Zar, 1996).

Os otólitos direitos foram emblocados em resina poliéster e cortados transversalmente (dorsoventralmente) em seções de 0,3 a 0,4 mm com a utilização de uma serra de baixa rotação Isomet Buehler[®], equipada com lâmina diamantada de 0,3 mm de espessura (15 LC 11-4254). De cada otólito

foram retiradas de 3 a 4 seções abrangendo a região do núcleo. A seção que continha o núcleo era separada, lixada com lixa d'água número 1200, montada sobre lâmina de vidro, tendo como meio bálsamo do Canadá, e coberta com lamínula.

A observação e a mensuração das seções dos otólitos foram realizadas através do programa computacional Image Tool (UTHSCSA, 1996) utilizando imagens digitais com resolução de 1146 DPI obtidas a partir de uma câmera digital Leica DC100 acoplada a um estereomicroscópio Leica MZ75, a 18 vezes de aumento e com luz transmitida.

As idades foram atribuídas com base na contagem do número de transições entre as zonas translúcidas e opacas (Turner, 1986; Beckman e Wilson, 1995) e, conseqüentemente, as medidas dos raios dos anéis (*Ri*) representam a distância entre o núcleo e a borda interna de cada zona opaca. As medidas dos raios dos anéis e do raio total (*Rt*) foram tomadas entre o núcleo e a borda proximal do otólito, ao longo de uma linha tangente ao limite ventral do *sulcus acusticus* (Figura 82). Cada corte de otólito foi lido duas vezes, com um intervalo mínimo de seis meses entre as leituras. Os cortes que tiveram leituras discordantes foram re-examinados e, no caso de dúvida, descartados.

A verificação da sazonalidade de formação dos anéis etários foi feita a partir do cálculo das porcentagens mensais de bordas opacas e translúcidas e da variação mensal do incremento marginal (*IM*), calculado pela fórmula

$$IM = \frac{Rt - Ru}{Ru - Rp}$$

onde: Rt = raio total do otólito

Ru = raio do último anel

Rp = raio do penúltimo anel

O crescimento foi descrito através da equação de von Bertalanffy:

 $Lf = Lf_{\infty} \Big[1 - e^{-k(t-t_0)} \Big]$

onde: Lf = comprimento furcal estimado para a idade t

 Lf_{∞} = comprimento furcal assintótico

k = coeficiente de crescimento

 t_0 = idade teórica de comprimento igual a 0

O ajuste dos parâmetros deste modelo foi realizado de três formas distintas, duas baseadas em retrocálculo e uma baseada na idade e no comprimento de captura para machos, fêmeas e para os sexos agrupados.

Para o procedimento do retrocálculo do comprimento furcal na época de formação do anel etário, inicialmente descreveu-se a relação entre o raio total do otólito (*Rt*) e o comprimento furcal do peixe (*Lf*), para sexos separados, através da regressão logística

$$Lf = \frac{a}{1 + b \times c^{Rt}}$$

Os parâmetros *a*, *b* e *c* foram ajustados por interação através do método não linear de mínimos quadrados. As curvas de regressão obtidas para machos e fêmeas foram comparadas através da razão de verossimilhança máxima (Kimura, 1980; Cerrato, 1990).

Os comprimentos retrocalculados (*Lfi*) de cada espécime foram estimados através do método baseado na hipótese "corpo proporcional" (Francis, 1990), onde o comprimento é a variável dependente, pela equação

$$Lfi = \frac{a}{1+b \times c^{Rt}} \times f$$

onde: *a*, *b* e *c* = parâmetros da regressão do comprimento furcal (*Lf*) sobre o raio total (*Rt*)

f = taxa entre o comprimento furcal observado (*Lf*) e o comprimento furcal estimado ($\hat{L}f$)para o raio total do otólito (*Rt*), $f = Lf \div \hat{L}f$

A primeira estimativa dos parâmetros do modelo de von Bertalanffy foi obtida através do ajuste não linear dos mínimos-quadrados da curva de crescimento sobre as médias ponderadas dos comprimentos furcais retrocalculados para cada anel etário, assumindo, desta forma, uma falsa independência entre os pontos (Jones, 2000). No programa computacional R este procedimento é implementado pela função "nls" (non linear least-squares; The R Core Development Core Team, 2002).

Na segunda estimativa assumiu-se que os dados de comprimento retrocalculados de um peixe eram medidas repetidas com estrutura autoregressiva de correlação (Jones, 2000) e os parâmetros da curva de crescimento foram ajustados diretamente sobre todos os comprimentos retrocalculados. No programa R utiliza-se a função "gnls" (generalized non linear least-squares) do pacote "nmle" (linear and non linear mixed effect models; Lindstrom e Bates, 1990; The R Core Development Core Team, 2002).

Finalmente, os parâmetros da função de crescimento de von Bertalanffy foram ajustados aos dados de comprimento-na-idade de captura através do método não linear dos mínimos-quadrados. Considerando que a idade mínima observada na amostra foi de cinco anos e visando um ajuste adequado do modelo, optou-se por utilizar os comprimentos médios retrocalculados das idades de um a quatro anos para completar a série de dados de comprimentona-idade.

Os valores de índice de performance de crescimento (ϕ '; Munro e Pauly, 1983; Pauly e Munro, 1984) foram calculados para todas as estimativas obtidas através da equação

 $\phi' = \log k + 2\log Lf_{\infty}$

Este índice, ao indicar a performance de crescimento a partir dos parâmetros da equação de von Bertalanfy, também permite a identificação de possíveis erros nas estimativas destes (Pauly e Munro, 1984).

A chave comprimento-idade indica freqüência relativa de cada grupo etário por classe de comprimento furcal (Sparre e Venema, 1998).

4.4.5 TAXAS DE MORTALIDADE

A taxa de mortalidade total anual (*Z*) foi calculada pelo método da curva de captura linearizada com base nos dados de composições de comprimentos, convertidos em idade, das capturas amostradas.

Por este método, a estimativa do coeficiente de mortalidade total é dado pelo inverso da inclinação da linha de regressão traçada sobre pontos selecionados no gráfico de dispersão do logaritmo natural da freqüência absoluta da classe de comprimento, dividida pelo tempo gasto nesta classe, $ln[C(L1,L2) \div \Delta t]$, contra a idade estimada para o comprimento médio da classe de comprimento, t [C(L1,L2)÷2] (Pauly 1983, 1984a, 1984b; Sparre e Venema, 1998). A taxa de sobrevivência (*S*) foi estimada pela equação $S = e^{-Z}$

Para converter os comprimentos em idades foram utilizados os parâmetros de crescimento da curva de von Bertalanffy calculados a partir das leituras de otólitos.

As inclinações das retas de regressão obtidas para os diferentes anos foram comparadas pela análise de covariância e, posteriormente, teste de Tukey foi aplicado para a determinação da significância da diferença entre os pares de retas dentro do conjunto de dados (Zar, 1996).

A estimativa do coeficiente de mortalidade natural (*M*) foi realizada a partir da comparação dos resultados de diversos modelos empíricos com as estimativas de mortalidade total (*Z*) obtidas para o período de estudo. Foram utilizados os seguintes métodos (Sparre e Venema, 1998):

Alagaraja

 $M = -\ln(0,01) \div Tm$

Hoening

 $Ln M = 1,45 - 1,01 \times ln Tm$

Pauly

Ln *M* = -0,0152 – 0,279 × ln Lt_{∞} + 0,6543 × ln *K* + 0,463 × ln *T*

Rikther e Efanov

 $M = 1,521 \div Tm_{50\%}^{0,720} - 1,155$

onde: *Tm* = longevidade

 Lt_{∞} = comprimento total assintótico (cm)

- *K* = parâmetro de curvatura da equação de crescimento de von Bertalanffy
- *T* = média anual da temperatura da água

 $Tm_{50\%}$ = idade de maturação massiva

4.4.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii

A análise de população virtual (Virtual Population Analysis – VPA) foi feita a partir dos dados de produção desembarcada de *Lopholatilus villarii* nos portos pesqueiros de Niterói (RJ), Ubatuba e São Paulo (SP), nos anos de 1995 a 1999, de cruzeiros que reportaram capturas realizadas entre os paralelos 22° a 28°S.

A distribuição anual de freqüência por classe de comprimento furcal utilizada foi obtida nos portos pesqueiros de Santos e Guarujá, em desembarques de cruzeiros de pesquisa e da frota comercial que operaram na área de estudo. Com isto, assumiu-se não haver diferença significativa entre as estruturas de comprimento dos desembarques nos diferentes portos pesqueiros. Assumiu-se também que a diferença da composição etária por classe de comprimento não variou de forma significativa durante o período de estudo e portanto utilizou-se apenas uma chave comprimento-idade baseada nas leituras de idade dos otólitos obtidos nos cruzeiros de pesquisa do N/Pq *Orion* e B/P *Margus II*.

O número de indivíduos capturados por classe etária foi estimado com base nas informações de distribuição anual de freqüência por classe de comprimento furcal, da relação peso~comprimento, dos desembarques em peso de *Lopholatilus villarii* e da composição etária de cada classe de comprimento, dada pela chave comprimento-idade.

A análise de população virtual, ou avaliação de população seqüencial (Megrey, 1989), foi realizada para coortes sucessivas de acordo com a metodologia sugerida por Sparre e Venema (1998).

As taxas de mortalidade por pesca (*F*) para as idades de 1 a 23 anos, de 1995 a 1998, foram calculadas de forma iterativa em planilha Microsoft Excel, que utiliza o algoritimo quase-Newton, pela equação:

 $\boldsymbol{F}_{i,a} = \boldsymbol{C}_{i,a} \times (\boldsymbol{F}_{i,a} + \boldsymbol{M}) \div \boldsymbol{N}_{i+1,a+1} \div \boldsymbol{e}^{(\boldsymbol{F}_{i,a} + \boldsymbol{M}) - 1}$

onde: <i>i</i> =	índice da idade
a =	índice do ano
C =	captura total em número
M =	taxa de mortalidade natural
N =	número de indivíduos no início do ano

As taxas de mortalidade por pesca do ano de 1999 representam as médias das taxas calculadas por classe etária nos anos de 1997 e 1998. Após algumas tentativas de ajuste a taxa de mortalidade por pesca terminal de todos os anos foi calculada pela média das mortalidades das idades 21 a 23.

Seguindo a notação acima, o número de indivíduos no início de cada ano para a classe etária 24+ ($N_{24+,a}$), para as classes etárias 1 a 23 no ano de 1999 ($N_{i,99}$) e para as idades de 1 a 23 anos entre 1995 e 1998 ($N_{i,a}$) foi calculado respectivamente pelas equações:

$$N_{24+,a} = C_{24+,a} \div F_{24+,a} \times (F_{24+,a} + M)$$
$$N_{i,99} = C_{i,99} \div [F_{i,99} \div (F_{i,99} + M)] \times (1 - e^{-M - F_{i,99}})$$
$$N_{i,a} = N_{i+1,a+1} \times e^{F_{i,a} + M}$$

O número médio de indivíduos por classe etária e ano ($\overline{N}_{i,a}$) foi dado por: $\overline{N}_{i,a} = C_{i,a} \div F_{i,a}$

A biomassa média por ano e classe etária foi estimada a partir dos pesos esperados por classe etária e dos valores de número médio de indivíduos na população.

Com os resultados obtidos na análise de população virtual, as análises de rendimento e biomassa-por-recruta de Beverton e Holt foram aplicadas com o objetivo de indicar as taxas de mortalidade por pesca (*F*) mais apropriadas para que o equilíbrio entre o tamanho de peixes capturados e o número de indivíduos disponíveis para a captura seja atingido (Jennings *et al.*, 2001).

Seguindo Sparre e Venema (1998), o rendimento-por-recruta (Y/R) foi calculado pela equação

$$\mathbf{Y}/\mathbf{R} = \mathbf{F} \times \mathbf{e}^{-M \times (Tc - Tr)} \times \mathbf{W}_{\infty} \times \left[\frac{1}{Z} - \frac{3\mathbf{S}}{Z + K} + \frac{3\mathbf{S}^{2}}{Z + 2K} - \frac{\mathbf{S}^{3}}{Z + 3K}\right]$$

e a biomassa média por recruta (\overline{B}/R) por

$$\overline{B}/R = e^{-M \times (Tc - Tr)} \times W_{\infty} \times \left[\frac{1}{Z} - \frac{3S}{Z + K} + \frac{3S^2}{Z + 2K} - \frac{S^3}{Z + 3K}\right]$$

onde: F = tax	a de mortalidade	por	pesca
---------------	------------------	-----	-------

<i>M</i> =	taxa de mortalidade natural
Tc =	idade de primeira captura
Tr =	idade de recrutamento
<i>W</i> _∞ =	peso total assintótico
Z =	taxa de mortalidade total (M+F)
S =	$e^{-K \times (Tc - T_0)}$
K =	parâmetro de curvatura da equação de crescimento de von
	Bertalanffy
$T_0 =$	idade teórica de comprimento igual a 0

O ponto de referência biológica F_{max} foi estimado pela observação da taxa de mortalidade por pesca (*F*) onde o rendimento máximo por recruta foi atingido. O valor de $F_{0,1}$, definido como o valor de *F* em que a inclinação da curva de rendimento-por-recruta (*Y/R*) cai para 10% do valor obtido para o estoque virgem (\overline{B}_0/R) (Butterworth *et al.*, 1989; Cadima, 2000; Jennings *et al.*, 2001) foi estimado pela maximização da função:

 $V = Y/R - 0.1 \times \overline{B}_0/R \times F$

O modelo de Thompson e Bell (Sparre e Venema, 1998) foi utilizado para a avaliação do efeito de possíveis mudanças dos níveis de mortalidade por pesca sobre o rendimento da pescaria e da biomassa do estoque.

A partir do número total de indivíduos na classe etária de 5 anos no início do ano de 1999 e do padrão de pesca estimado para este ano por classe etária (*F_i*), através da análise de população virtual, o número total de indivíduos para as idades (*Nt_i*) 6 a 24+ foi estimado pela equação $Nt_i = Nt_{i-1} \times e^{-Z_{i-1}}$.

O número de mortos por idade (Nm_i) foi calculado por $Nm_i = Nt_i - Nt_{i+1}$.

O número de indivíduos capturados das classes etárias 5 a 23 (*Nc_i*) foi estimado por $Nc_i = Nm_i \times F_i/Z_i$ e da classe etária 24+ por $Nc_{24+} = F_{24+}/Z_{24+} \times Nt_{24+}$.

A estimativa da produção em peso por classe etária (P_i) foi obtida pela fórmula $P_i = Nc_i \times Wt_i$, onde Wt_i é o peso total esperado para um indivíduo da idade *i*, de acordo com a regressão comprimento-peso. A biomassa média por classe etária (\overline{B}_i) foi dada por $\overline{B}_i = P_i \times F_i$.

Tendo esta seqüência de cálculo como base, as estimativas de F_i foram multiplicadas por valores de 0,00001 a 1,5.

5 RESULTADOS

5.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA

Foram analisados um total de 197 operações de pesca do N/Pq *Orion* (Tabela 1 e Figuras 1 e 3) e 106 do B/P *Margus II* (Tabela 2 e Figuras 2 e 4). Nestas foram capturados, respectivamente, 46706 e 11250 peixes.

A proporção entre o número de peixes ósseos e cartilaginosos observada nas capturas das duas embarcações foi praticamente a mesma. Nas campanhas do N/Pq *Orion* os peixes ósseos representaram 86% do total em número, enquanto que nas do B/P *Margus II* esta classe representou 85%. Nas operações de pesca analisadas formam capturados peixes de 43 espécies ou categorias pertencentes a 31 famílias (Tabela 3).

A composição das capturas destas embarcações também foi bastante semelhante. As espécies numericamente mais importantes nas capturas do N/Pq *Orion* foram *Helicolenus dactylopterus lahillei* (sarrão), *Lopholatilus villarii* (peixe-batata), *Urophycis cirrata* (abrótea-de-profundidade) e *Epinephelus niveatus* (cherne-verdadeiro), que representaram 72% das capturas (Tabela 4). No B/P *Margus II* as espécies mais capturadas foram *Urophycis cirrata*, *Lopholatilus villarii*, os cações do gênero *Squalus* e *Helicolenus dactylopterus lahillei*, correspondentes a 87% do total (Tabela 5).

As distribuições dos valores de *CPUE* obtidos nas operações de pesca do N/Pq *Orion* e do B/P *Margus II* tiveram distribuição gama (KS: *P*= 0,8298 e 0,7857) (Figuras 5 e 9).

A *CPUE* das operações do N/Pq *Orion* variou significativamente em função da profundidade (teste F: P = 3,01e-14), da latitude (teste F: P = 3,26e-3) e da interação destes dois fatores (teste F: P = 0,0152) (Tabela 6). Os resíduos do modelo apresentaram distribuição normal (SW: P = 0,0187) e os gráficos diagnósticos (Figuras 6 e 7) indicam um ajuste adequado aos dados. De forma geral, os valores de *CPUE* tenderam a ser mais elevados em maiores

profundidades e nas porções meridionais da área de estudo (Figura 8). No entanto, a significância da interação entre as variáveis explicativas profundidade e latitude, indicou que houve variação neste padrão. O efeito do incremento da latitude sobre o índice de abundância relativa foi melhor detectado nas operações realizadas até a profundidade de 300 m e, na faixa de latitude de 26°S, os valores de *CPUE* obtidos entre as isóbatas de 300 a 500 m foram próximos aos do estrato de profundidade 100-300 m.

Na Tabela 7 encontram-se indicadas as espécies com as maiores médias de *CPUE* por classes de latitude e profundidade. Observa-se que *Lopholatilus villarii* está presente como uma das principais capturas em todas as subdivisões da área de atuação do N/Pq *Orion* sendo, de forma geral, mais abundante na classe de profundidade de 300 a 500 m, com um gradiente positivo com o aumento da latitude. Capturas importantes de *Epinephelus niveatus* ocorreram no estrato de 100 a 300 m de profundidade e entre as latitudes de 23 a 25°S. *Helicolenus dactylopterus lahillei* e *Urophycis cirrata* tiveram suas maiores abundâncias nas profundidades de 300 a 500 m e entre as latitudes de 25 a 26°S, onde efetivamente ocorreram as operações de pesca de maior profundidade desta série de cruzeiros (Figura 3).

A análise dos dados de *CPUE* obtidos no B/P *Margus II* indicaram como significativas as variações causadas pelo efeito da profundidade (teste F: P = 3,78e-11), da interação entre profundidade e cruzeiro (teste F: P = 0,0431) e, em menor grau, da latitude (teste F: P = 0,0548) (Tabela 8). A distribuição dos resíduos apresentou distribuição normal (SW: P = 0,1485), sem tendências sistemáticas de erro (Figuras 10 e 11).

Assim como nas capturas do N/Pq *Orion*, a principal fonte de variação da *CPUE* foi a profundidade, com as maiores taxas de captura sendo observadas nas maiores batimetrias (Figura 12). A diferença entre os índices de abundância obtidos nas operações de pesca realizadas em áreas rasas e profundas foi maior no cruzeiro de outono (Figura 13). O planejamento amostral adotado nas campanhas do B/P *Margus II* possibilitou uma melhor avaliação da variação da *CPUE* em função da latitude. Neste conjunto de dados pode-se observar uma tendência de aumento da *CPUE* com o aumento da latitude, principalmente nas regiões mais profundas (Figura 12).

De forma geral, o padrão de distribuição das espécies foi semelhante entre os cruzeiros das duas embarcações. Nas capturas do B/P *Margus II*, a espécie *Urophycis cirrata* figurou entre as principais nos dois cruzeiros, em todas as classes de latitude, na classe de profundidade de 300-500 m. A variação de sua abundância relativa entre os cruzeiros de primavera e outono neste estrato de profundidade foi a de maior significância dentre as espécies mais abundantes (Teste-t pareado: P = 0,078). Sua taxa de captura também aumentou no cruzeiro de outono no estrato de profundidade 100-300 m (Teste-t pareado: P = 0,197), quando apresentou ocorrências relativamente importantes em áreas mais ao norte, até o paralelo 23°S (Tabela 9). A variação observada na taxa de captura desta espécie entre os cruzeiros foi a responsável pelo aumento da *CPUE* total no estrato de profundidade 300-500 m no cruzeiro de outono (Figura 13). Estes resultados sugerem o aumento de sua área de distribuição em direção norte e para áreas menos profundas no período de outono.

Outra espécie de grande freqüência de ocorrência e abundância foi *Lopholatilus villarii*. Esta ocorreu entre as principais capturas nos dois cruzeiros em praticamente todas as classes de profundidade e latitude. A variação de abundância relativa mais importante para esta espécie ocorreu no estrato de profundidade 100-300 m (Teste-t pareado: P = 0,099), apresentando números mais elevados no cruzeiro de outono. Na classe de profundidade 300-500 m sua *CPUE* média praticamente não apresentou variações entre os dois cruzeiros (Teste-t pareado: P = 0,998) (Tabela 9).

Helicolenus dactylopterus lahillei foi uma espécie típica da classe de profundidade 300-500 m, ocorrendo de forma mais abundante entre os paralelos 25 e 29°S. *Pseudopercis numida* apresentou capturas relativamente importantes na classe de profundidade 100-300 m. Os cações do gênero *Squalus* também tiveram suas maiores ocorrências registradas nesta classe de profundidade, principalmente do cruzeiro de primavera. *Epinephelus niveatus*, espécie de alto valor econômico, teve suas maiores capturas nas latitudes ao norte de 24°S, no estrato de profundidade 100-300 m.

Os valores de diversidade (H') e equitatividade (Eq) calculados para as operações de pesca do B/P *Margus II* seguiram uma distribuição normal (Figuras 14 e 19, SW: P = 0,3796 e 0,0290). Modelos lineares generalizados

baseados nesta distribuição, com função de ligação identidade, ajustaram-se adequadamente aos valores de *H*' e *Eq* calculados (Figuras 15, 16, 20 e 21). Os resíduos dos modelos foram normais (SW: *P*= 0,3433 e 0,0760) e indicaram que o efeito da profundidade foi o que mais afetou a variação de ambos os índices ecológicos (teste F: *P* = 2,66e-7 e 4,51e-8, Tabelas 10 e 11). O efeito da latitude e/ou de sua interação com a profundidade influiu apenas moderadamente sobre *H*' e *Eq* (teste F *P* < 0,10). O efeito da interação entre as variáveis explicativas profundidade e cruzeiro foi maior na variação de *Eq* (teste F *P* = 0,0670). As Figuras 17 e 22 mostram a variação de *H*' e de *Eq* por estratos de profundidade e classes de latitude e as Figuras 18 e 23 a variação por cruzeiro e profundidade.

Esta análise indicou que, de forma geral, em profundidades menores foram obtidas capturas mais equitativas e com maior diversidade de espécies quando comparadas às de maior profundidade. A latitude age como um fator secundário, influindo principalmente as áreas rasas. O nível de significância relativamente alto de sua interação com a profundidade apontou para o fato de que, em latitudes iguais ou maiores a 27°S, os valores obtidos nos locais mais rasos chegaram a ser, em sua maioria, iguais ou menores aos calculados para as operações em áreas mais profundas.

A interação entre os fatores profundidade e cruzeiro observada na variação de *Eq* deveu-se à amplitude dos valores desta variável no cruzeiro de outono em ambos os estratos de profundidade. Em algumas operações de pesca realizadas no estrato de 100-300 m foram obtidas altas taxas de captura de *Squalus* spp. ou de *Urophycis cirrata*, o que diminuiu a equitatividade. Entre as isóbatas de 300 e 500 m houve capturas conjuntas de *Urophycis cirrata*, *Squalus* spp., *Helicolenus dactylopterus lahillei* e *Merlucius hubbsii*, que resultaram em valores de *Eq* acima do esperado.

Para a análise de associação das espécies observadas nas capturas do N/Pq *Orion* e do B/P *Margus II* foram selecionadas, respectivamente, 20 e 18 espécies (Tabelas 12 e 13). Os níveis de corte dos valores de Log($CPUE_{s,i}+1$) para a determinação das pseudo-espécies foram:

 Visando a comparação dos resultados da análise de espécies indicadoras em duas vias (TWINSPAN) entre os três conjuntos de dados, foram considerados até dois níveis de divisões para as operações de pesca, e até três níveis para as espécies.

Na análise dos dados de pesca do N/Pq *Orion* foram identificados quatro grupos de operações de pesca e seis grupos de espécies (Figura 24). Entre as variáveis consideradas para a caracterização destas operações, a profundidade foi a que apresentou o gradiente mais marcante (Figura 25).

A primeira divisão indicou dois grandes grupos de operações de pesca com composições de captura características e delimitados, em sua maioria, entre as isóbatas de 100 e 250 m e de 250 a 500 m, denominados respectivamente como de "quebra de plataforma" e de "talude superior". Cada um destes grupos foi subdividido, ainda de acordo com as características batimétricas, em "interno" e "externo". Os valores de *CPUE* mais elevados foram obtidos nas pescarias de talude superior (Figura 25)

Os grupos de operações de pesca definidos indicam de forma consistente as áreas propícias à pesca de determinadas espécies. A análise de espécies indicadoras (Tabela 14) mostrou que das 20 espécies selecionadas, apenas duas, *Heptranchias perlo* e *Priacanthus arenatus*, não foram consideradas como sendo indicadoras significativas (P > 0,05).

Helicolenus dactylopterus lahillei e Urophycis cirrata ocorreram com mais freqüência e abundância nas operações de pesca do grupo talude superior, principalmente em sua porção externa. As capturas de *Lopholatilus villarii*, *Epinephelus niveatus* e *Pseudopercis numida* foram comuns nos grupos quebra de plataforma externa e talude superior interno. *Lopholatilus villarii* apresentou um maior índice de valor indicativo no grupo talude superior interno e *Epinephelus niveatus* no grupo quebra de plataforma externa. *Pseudopercis numida* apresentou uma distribuição eqüitativa nestas áreas. Os cações do gênero *Squalus* ocorreram no grupo quebra de plataforma, especialmente na parte interna (Tabela 14).

Devido ao caráter exploratório dos cruzeiros do N/Pq *Orion*, que visavam a identificação de áreas de pesca de espécies de valor comercial, em especial *Epinephelus niveatus*, *Pseudopercis numida* e *Lopholatilus villarii*, suas operações de pesca concentraram-se nas principais áreas de ocorrência destas espécies (Figuras 3 e 25).

A análise de classificação das espécies mostrou que, juntamente com *Helicolenus dactylopterus lahillei* e *Urophycis cirrata*, foram freqüentes as capturas das espécies *Polyprion americanus*, *Hexanchus griseus* e *Merluccius hubbsi*. As ocorrências de *Lopholatilus villarii* estiveram associadas às de *Genypterus brasiliensis* e dos cações do gênero *Scyliorhinus* na área de talude superior. Na quebra de plataforma externa, *Lopholatilus villarii* ocorreu com o grupo das espécies *Epinephelus niveatus* e *Pseudopercis numida*, que também incluiu *Gymnothorax* spp. Estes dois últimos grupos foram divididos apenas até a segunda divisão, o que indica uma ampla distribuição das espécies na área de estudo (Figura 24).

A análise de espécies indicadoras em duas vias (TWINSPAN) realizada com os dados dos cruzeiros de primavera e outono no B/P *Margus II* levou a resultados similares aos obtidos com os dados do N/Pq *Orion*. Os grupos de estações caracterizados por associações de espécies típicas de quebra de plataforma e de talude superior foram bem definidos para ambos os cruzeiros (Tabelas 15 e 16, Figuras 26 a 29).

Com operações de pesca mais bem distribuídas, a análise dos dados do B/P *Margus II* também indicou um padrão espacial de distribuição das espécies. De acordo com a composição das capturas, as operações de quebra de plataforma foram divididas em um pequeno grupo localizado, em sua maior parte, entre os paralelos 23 e 24°S e outro com a maioria das operações entre 24 e 26°S. O grupo de operações localizado mais ao norte foi caracterizado em ambos os cruzeiros pela ocorrência dos cações do gênero *Mustelus* e os peixes ósseos *Caulolatilus chrysops, Epinephelus niveatus e Pagrus pagrus*. Nas operações do grupo localizado entre os paralelos 24 e 26°S foi comum a ocorrência de *Gymnothorax* spp. e de *Heptranchias perlo*.

As operações do grupo talude superior nos cruzeiros de primavera e outono foram caracterizadas pela alta abundância das capturas de Urophycis cirrata, Genypterus brasiliensis, Carcharhinus spp., Helicolenus dactylopterus lahillei, Merluccius hubbsi, Polyprion americanus e Polymixia lowei. Os cações dos gêneros *Squalus* e *Scyliorhinus* tiveram, de forma geral, uma ampla distribuição, sendo capturados principalmente nas operações de quebra de plataforma e nas operações de talude superior ao norte de 25°S.

No cruzeiro de outono observou-se capturas associadas de *Urophycis cirrata* e cações do gênero *Squalus* (Tabela 09, Figura 28 grupo BB) em profundidades maiores que 300 m (Figura 29).

Lopholatilus villarii foi uma espécie abundante, freqüentemente capturada nas operações caracterizadas pelas associações de espécies de quebra de plataforma externa e talude superior interno.

Os resultados obtidos através da Análise Canônica de Correspondência mostraram de forma clara os grupos de estações e espécies determinados pelo TWINSPAN. O efeito das variáveis abióticas consideradas sobre a abundância relativa das espécies foi indicado pela alta significância (P < 0,001) do primeiro eixo canônico e do traço total dos modelos. Na análise dos dados de pesca obtidos no N/Pq *Orion* e nos dois cruzeiros do B/P *Margus II*, a variação batimétrica foi apontada como a principal fonte de variação da abundância relativa das espécies, seguida da variação longitudinal.

Observa-se que, devido ao perfil da linha de costa da região estudada, as operações realizadas nas maiores longitudes localizam-se nas áreas de maior latitude e vice-versa. A variação longitudinal de oito graus, maior que a variação latitudinal, de apenas seis graus, pareceu constituir-se em um descritor mais preciso da variação das espécies.

Na análise dos dados de pesca do N/Pq *Orion*, o efeito das variáveis profundidade, latitude e longitude sobre a abundância das espécies foi considerada altamente significativa (P = 0,0001). O teste de significância do primeiro e de todos os eixos mostrou que a relação canônica entre as matrizes biológica e abiótica também foi significativa (P = 0,0001). Os três eixos canônicos explicaram 14%, 6% e 1% da variância dos dados de abundância e os dois primeiros eixos apresentaram correlações espécie-ambiente relativamente altas (r= 0,83 e 0,74, Tabela 17). As variáveis profundidade e longitude foram as que apresentaram, respectivamente, as maiores correlações com estes eixos (Tabela 18).

No diagrama de ordenação, a dispersão das espécies ao longo do primeiro eixo canônico, relacionado principalmente à variação batimétrica,

definiu as associações de talude superior e de quebra de plataforma (Figura 30). Das espécies típicas das capturas de quebra de plataforma, *Epinephelus niveatus, Pseudopercis numida* e *Gymnothorax* spp. foram mais abundantes em maiores profundidades, no grupo denominado quebra de plataforma externa. A análise evidenciou ainda que as espécies características das associações de quebra de plataforma interna apresentaram um gradiente longitudinal de ocorrência. As espécies *Epinephelus flavolimbatus, Pagrus pagrus* e *Caulolatilus chrysops* ocorreram preferencialmente na porção oriental da área de estudo enquanto que *Pseudopercis semifasciata* e os cações *Carcharhinus* e *Squalus* foram mais abundantes na porção ocidental. O mapa do primeiro eixo canônico, condicionado pelas variáveis profundidade, longitude e latitude (Figura 31), indica a posição geográfica e a classificação das operações de pesca pelo TWINSPAN e as áreas preferenciais de ocorrência das espécies, identificadas pelo valor da projeção de cada espécie neste eixo.

A análise dos dados de pesca dos cruzeiros de primavera e outono do B/P *Margus II* indicou como sendo significativos os efeitos causados pelas variáveis profundidade e a longitude (P = 0,0001). A relação canônica entre as matrizes biológica e abiótica também foi altamente significativa (P = 0,0001). Em ambos os cruzeiros o primeiro eixo canônico explicou 22% da variância total dos dados de abundância e apresentou uma alta correlação espécieambiente (r= 0,95 e 0,93). No cruzeiro de primavera o segundo eixo explicou 4% da variação dos dados de abundância enquanto que no de outono apenas 3% (Tabelas 19 e 21). A variável profundidade obteve uma maior correlação com o primeiro eixo e a longitude com o segundo (Tabelas 20 e 22).

Os diagramas de ordenação dos dados dos cruzeiros do B/P *Margus II* mostraram mais uma vez o padrão consistente de distribuição das espécies ao longo do gradiente batimétrico, separando perfeitamente as espécies típicas das associações observadas nas capturas de quebra de plataforma e aquelas de talude superior (Figuras 32 e 34). Como efeito do menor poder explicativo do segundo eixo nestas análises, quando comparado aos resultados do N/Pq *Orion*, a divisão longitudinal dos grupos de quebra de plataforma não pode ser evidenciado. A observação dos mapas do primeiro eixo canônico condicionado pelas variáveis profundidade e longitude para os cruzeiros de primavera e

outono (Figuras 33 e 35) e o diagrama de ordenação conjunto destes cruzeiros (Figura 36) mostram a forte influência do gradiente batimétrico na distribuição das espécies e sugerem que estas são residentes, não apresentando grandes deslocamentos sazonais. A localização de espécies importantes na pesca de espinhel-de-fundo na região, como *Lopholatilus villarii, Epinephelus niveatus, Pseudopercis numida, Urophycis cirrata e Helicolenus dactylopterus lahillei* no diagrama permaneceu praticamente inalterada no diagrama entre os cruzeiros.

5.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL

No período de 1996 a 1999 foram registrados nos portos pesqueiros dos municípios de Niterói (RJ), Ubatuba (SP) e Santos (SP), um total de 2177 cruzeiros de 229 embarcações que operaram com linha-de-fundo e que produziram 5949 t de peixes.

Com as embarcações agrupadas por categoria de frota, observou-se que a de Niterói foi mais numerosa, contando com 70% dos barcos registrados. O número total de embarcações em operação caiu de 124 em 1996 para 93 em 1999. Esta tendência de queda foi maior para a frota de Niterói. A frota de Ubatuba também sofreu uma acentuada perda de embarcações entre os anos de 1996 e 1998, apresentando uma pequena recuperação em 1999. Em Santos, a frota praticamente dobrou de 1997 para 1998, voltando a diminuir em 1999 (Tabela 23).

O acompanhamento dos desembarques mostrou que em um mesmo cruzeiro, além da utilização de linhas-de-fundo, os pescadores utilizavam outras técnicas de pesca de linha, como corrico e pequenos espinhéis-de-superfície para a captura de peixes pelágicos. A captura de 1003 t destas espécies, representou 17% do total e apresentou um forte caráter sazonal, com picos de captura no quarto trimestre de cada ano (Figura 37). O dourado, *Coryphaena hippurus*, principal espécie pelágica capturada, contribuiu com 80% do peso desembarcado do grupo.

Os desembarques de cruzeiros direcionados para a captura de peixes demersais, ou seja, onde estes representaram pelo menos 50% das capturas, ocorreram principalmente no porto de Niterói, que recebeu cerca de 75% dos desembarques e 72% da produção destas espécies. Com 14% do número de

desembarques de demersais, Santos recebeu 21% da produção. O porto de Ubatuba contou com 11% do número de desembarques e apenas 7% da produção. No período analisado, os 1922 cruzeiros dirigidos para a captura de peixes demersais produziram 4908 t destas espécies, ou seja, 99,2% do peso total de 4946 t do grupo (Tabelas 24 e 25).

Em Niterói, foi observada uma tendência acentuada de queda na produção, no número de desembarques e no esforço (dias efetivos de pesca) direcionado aos peixes demersais, enquanto que em Santos a tendência foi de incremento. Em Ubatuba, após uma queda na atividade pesqueira com linhade-fundo entre 1996 e 1998, no ano de 1999 foi registrado o aumento nestes indicadores. Seguindo a tendência de Niterói, o esforço total empregado caiu de 6135 dias efetivos de pesca em 1996 para 3273 em 1999 (Tabelas 24 a 26, Figuras 38 e 39).

A *CPUE* nominal de peixes demersais variou de forma distinta para os diferentes portos de desembarque (Figura 40). Os valores de *CPUE* calculados para os desembarques no porto de Niterói variaram de 196 a 318, com média em 255 kg/dia de pesca, mostrando ligeira tendência linear de queda (ANOVA: P = 0,0986). Os desembarques realizados em Santos foram os que obtiveram melhores taxas de captura, apresentando valores de 217 a 764 com média em 436 kg/dia de pesca. Os desembarques em Ubatuba tiveram em média uma *CPUE* de 174 e amplitude de 87 a 463 kg/dia de pesca. As *CPUE*s registradas em Ubatuba e Santos não mostraram tendências lineares significativas (ANOVA: P = 0,1464 e 0,3465, respectivamente).

As principais espécies demersais alvo das pescarias com linha-de-fundo foram *Lopholatilus villarii*, *Pseudopercis numida*, *Epinephelus niveatus* e *Genidens barbus* (bagre). Estas 4 espécies representaram 91% das 4946 t de demersais capturados (Tabela 25), indicando uma alta seletividade do petrecho e um forte direcionamento do esforço de pesca, que também foi evidenciado pela composição das capturas por cruzeiro. Em 62% dos desembarques, a principal espécie capturada correspondeu a 50% ou mais do total desembarcado (Tabela 27). Observações de campo indicaram que ocasionalmente na categoria "cherne", anotada pelos coletores de dados, além de *Epinephelus niveatus*, são incluídas as espécies *Epinephelus flavolimbatus* e *Polyprion americanus*, e que a categoria "bagres", dos desembarques nos municípios de Santos e Guarujá, refere-se principalmente a espécie Genidens barbus.

A verificação da relação entre os portos de procedência e de desembarque dos cruzeiros de pesca mostrou que normalmente os barcos desembarcaram suas capturas no porto de origem da viagem. Apenas em Ubatuba foi registrado um número alto de viagens iniciadas em outros portos. Neste porto 31,5% dos desembarques foram de cruzeiros iniciados nos Estados do Rio de Janeiro ou do Espírito Santo (Tabela 28).

A área de captura reportada por viagem, indicou a área preferencial de operação dos barcos baseados nos diferentes portos (Tabela 29). Em Niterói, foram desembarcadas capturas realizadas principalmente na região da costa entre o norte do Estado do Rio de Janeiro e o sul de São Paulo (22 a 26°S). Operações ao largo de Santa Catarina e Rio Grande do Sul (26 a 32°S) foram reportadas em apenas 13% de seus desembarques. Em Santos, foram registrados desembarques de capturas provenientes do sul do Estado do Espírito Santo ao sul do Rio Grande do Sul, sendo mais freqüentes aquelas realizadas de Santos ao sul do Cabo de Santa Marta Grande, SC (24 e 30°S). Os barcos que desembarcaram em Ubatuba concentraram suas operações de pesca ao largo do Estado de São Paulo (24 a 26°S).

De forma geral, a freqüência dos desembarques das principais espécies demersais e de *Coryphaena hippurus* não variou muito entre os anos, mas sim entre os portos (Tabela 30). As espécies *Epinephelus niveatus* e *Pseudopercis numida* obtiveram, em todos os portos, freqüências de ocorrência total nos desembarques igual ou superior a 70%. Os desembarques de *Lopholatilus villarii* foram mais freqüentes nos portos de Niterói (77%) e de Santos (68%), que também apresentaram as maiores taxas para *Genidens barbus* e *Micropogonias furnieri* (corvina). Ubatuba, que apresentou uma freqüência de desembarques de *Genidens barbus* de apenas 4%, foi o porto onde as espécies demersais *Epinephelus* spp. e, principalmente, *Pagrus pagrus* foram mais freqüentemente desembarcadas. Este porto também destacou-se por ter registrado capturas de *Coryphaena hippurus* em 56% de seus desembarques, enquanto que Niterói e Santos registraram respectivamente 31 e 10%.

Com a análise do direcionamento da atividade pesqueira, feita a partir da relação entre o número relativo acumulado de cruzeiros e as contribuições em

peso das principais espécies por desembarque (Biseau, 1998), foi possível discriminar as espécies alvo e as acessórias, e inferir seus padrões de distribuição espacial. A Figura 41 mostra a curva de freqüência cumulativa de desembarques ($P_{j,s}$) em função da participação relativa por desembarque (j) das principais espécies capturadas e a Tabela 31 indica os níveis explicativos de qualificação (NEQ) para o nível explicativo (NE) de 80%.

Observou-se que *Coryphaena hippurus* e *Genidens barbus* foram alvo de operações de pesca fortemente direcionadas. O formato de suas curvas, acentuadamente côncavas, sugere um padrão de distribuição agregado.

Coryphaena hippurus foi alvo dos barcos baseados em Niterói e Ubatuba, onde foi mais freqüentemente desembarcado (Tabela 30, Figura 41). Foi capturada com maior abundância durante o quarto trimestre de cada ano (Figura 37) e em Niterói, nos anos de 1997 e 1998, chegou a representar praticamente a totalidade das capturas dos desembarques em que esteve presente. No porto de Ubatuba foram observados desembarques de cruzeiros bastante direcionados em 1996 e 1997 quando, para um nível explicativo de 80%, obteve um nível de qualificação de cerca de 40% (Tabela 31). Embora seus desembarques tenham sido freqüentes neste porto nos anos de 1998 e 1999, suas capturas não tiveram caráter direcionado. Nos desembarques de Santos, *Coryphaena hippurus* figurou apenas como acessória na pesca de linha-de-fundo.

Genidens barbus foi uma espécie muito visada pelas embarcações de Santos, principalmente nos anos de 1998 e 1999 (Tabelas 25 e 30). Neste período, sua captura por cruzeiro representou pelo menos 62% do total (NEQ) em 80% (NE) dos desembarques em que ocorreu (Tabela 31 e Figura 41). Sua pesca teve caráter marcadamente sazonal, com picos de captura no terceiro trimestre de cada ano (Figura 42). Nos outros portos sua produção foi pequena e seu desembarque foi pouco freqüente.

As espécies mais importantes para a pescaria de linha-de-fundo no período estudado foram *Lopholatilus villarii*, *Pseudopercis* spp. e *Epinephelus niveatus*. Estas foram as mais abundantes e freqüentes nos desembarques em praticamente todos os anos e portos pesqueiros.

Lopholatilus villarii foi a espécie que apresentou desembarques anuais mais elevados, com uma captura total de 2006 t representou 41% da produção

de peixes demersais. Foi desembarcada principalmente no porto de Niterói, onde esteve presente em cerca de 77% dos desembarques (Tabelas 25 e 30) e em 80% destes representou pelo menos 44% da captura total (Tabela 31 e Figura 41). A sua produção anual apresentou tendência geral de queda, variando de 619 t em 1996 para 382 t em 1999. Esta foi causada principalmente pela diminuição da captura desembarcada em Niterói (ANOVA: P = 0,0015, Figura 43), onde sua produção apresentou picos no primeiro ou segundo trimestres de cada ano. Com uma pescaria também direcionada, os desembarques de *Lopholatilus villarii* em Santos, tiveram uma tendência de aumento (ANOVA: P = 0,0004), principalmente até o quarto trimestre de 1997, quando sua produção trimestral atingiu o patamar de 20 toneladas. Os desembarques desta espécie no porto de Ubatuba não foram tão freqüentes e indicaram cruzeiros comparativamente menos direcionados, que mantiveram uma produção trimestral estável (ANOVA: P = 0,8900) ao redor de 5 toneladas.

Epinephelus niveatus também apresentou uma tendência de queda na produção anual causada pela diminuição dos desembarques em Niterói, seu principal porto de desembarque (Figura 44). Esta espécie esteve presente em 78% dos desembarques em Santos (Tabela 30), onde teve uma maior importância relativa por cruzeiro (Tabela 31, Figura 41). Neste porto, sua produção trimestral média foi de 15 t, sem tendências lineares significativas (ANOVA: P = 0,5851) e com máximos de produção por trimestre nos anos de 1996 e 1998, quando chegou a atingir a marca de 28 t. Seus desembarques em Ubatuba também foram bastante freqüentes (Tabela 30), porém com uma ligeira tendência de queda no volume de captura (ANOVA: P = 0,0128). A média de produção trimestral nos anos de 1996 e 1997, neste porto, foi de 9 t caindo para 3 t nos anos seguintes.

As descargas de *Pseudopercis* spp. foram mais freqüentes no porto de Niterói, onde sua pescaria apresentou padrão de direcionamento mais forte e constante (Tabelas 30 e Figura 41). A exemplo das outras espécies desembarcadas neste porto, sua captura também apresentou tendência de queda (ANOVA: P = 0,0003, Figura 45). Sua ocorrência foi registrada em 83% dos desembarques e, em 80% destes, representou pelo menos 20% do total capturado (Tabela 31). No ano de 1996, foi observada nos portos de Santos e, principalmente no de Ubatuba, uma pescaria mais dirigida para esta espécie,

fora dos padrões obtidos nos anos seguintes. Em 1996 a produção de *Pseudopercis* spp. em Ubatuba chegou a 42 t. No entanto, a tendência de sua produção trimestral foi praticamente estável (ANOVA: P = 0,6214 e 0,0190), girando em torno de 6 t.

As espécies *Pagrus pagrus*, *Epinephelus* spp., *Micropogonias furnieri* e *Priacanthus arenatus* foram classificadas como espécies acessórias, com volumes de captura e freqüência de desembarques baixos ou de importância relativa em apenas um porto pesqueiro (Tabelas 25 e 30). O formato convexo de suas curvas de freqüência acumulada indica que suas contribuições por cruzeiro foram pequenas, obtendo de forma geral níveis de qualificação explicativa inferiores a 20% para um nível explicativo de 80% (Figura 41).

Pagrus pagrus foi mais constante nos desembarques de Ubatuba, onde chegou a ser alvo de uma pesca dirigida no ano de 1996. Os desembarques de *Epinephelus* spp. também foram relativamente freqüentes em Ubatuba, porém com pouca participação percentual nas capturas. No porto de Santos, em 1996, desenvolveu-se uma pescaria voltada para esta espécie. Neste ano *Epinephelus* spp. ocupou o segundo lugar em volume de captura, teve sua ocorrência registrada em 22% dos cruzeiros e, em 80% destes, representou 50% ou mais do total desembarcado. Esta pescaria, no entanto, não teve continuidade.

Os desembarques de *Micropogonias furnieri* foram registrados apenas no porto de Santos como acompanhante da pesca de *Genidens barbus*. Mesmo assim, em 1999 seu desembarque neste porto chegou a superar o de espécies tradicionalmente capturadas, como *Epinephelus niveatus* e *Pseudopercis* spp.. Os desembarques de *Priacanthus arenatus* ocorreram principalmente em Niterói.

5.2.1 MODELAGEM DA CAPTURA POR UNIDADE DE ESFORÇO DO PEIXE-BATATA (*Lopholatilus villarii*)

Nos anos de 1996 a 1999, nos portos de Niterói, Ubatuba e Santos, foram desembarcados 2006 t de *Lopholatilus villarii*, provenientes de 1551 cruzeiros de pesca com linha-de-fundo. Para um nível explicativo de 80% foram selecionados *a priori* 799 cruzeiros que produziram 1616 t. Para a análise de variação da *CPUE* foram considerados os dados de pesca de 544 destes cruzeiros que apresentaram informações completas de captura e esforço e que

realizaram operações de pesca entre as latitudes de 22 e 28°S. Os cruzeiros analisados desembarcaram um total de 877 t de *Lopholatilus villarii*.

Devido à forma assimétrica da distribuição de freqüência da *CPUE*, assumiu-se que esta teve distribuição gama com forma 2,1121 e escala 90,8148 (KS: *P* = 0,3253, Figura 46). Conseqüentemente, a técnica de modelos lineares generalizados empregada para modelar a variação da *CPUE* em função das variáveis explicativas categóricas porto, ano, trimestre, latitude e longitude e suas interações significativas de segunda ordem, utilizou a distribuição gama e a função de ligação logarítmica.

O modelo selecionado para descrever as variações de *CPUE* observadas foi:

$$\hat{\mu}_{ ext{cpue}} = \mathbf{e}^{lpha + eta_{ extsf{p}} + \chi_{ extsf{la}} + \delta_{ extsf{a}} + arphi_{ extsf{t}} + \gamma_{ extsf{lo}} + eta arphi_{ extsf{pt}} + \delta arphi_{ extsf{at}}}$$

onde $\hat{\mu}_{cpue}$ é a *CPUE* de *Lopholatilus villarii* esperada para um desembarque no porto β_p , na latitude χ_{la} , no ano δ_a , no trimestre φ_t , na longitude γ_{lo} e considerando as interações entre porto de desembarque e trimestre $\beta\varphi_{pt}$ e ano e trimestre $\beta\varphi_{at}$. O coeficiente α indica o logaritmo natural da *CPUE* esperada para os desembarques de Niterói (β_1) no primeiro trimestre (φ_l) do ano de 1996 (δ_1), cujas capturas tenham sido realizadas entre as latitudes 22 e 24°S (χ_1) e as longitudes 40° e 42°W (γ_1). A Tabela 32 apresenta a análise de deviância e o nível de significância de cada um dos fatores, e na Tabela 33 encontram-se indicados os valores de seus coeficientes. O coeficiente de determinação (r²) do modelo foi de 30%. Os gráficos diagnósticos de dispersão dos resíduos da deviância (Figura 47) e de envelopes para o resíduo componente do desvio (Figura 48) mostram uma distribuição homogênea, normal (SW: *P*= 0,3101) e dentro do intervalo de confiança indicando o bom ajuste do modelo aos dados observados (Paula, 2000).

A dinâmica desta pescaria pode ser descrita através dos coeficientes de ajuste do modelo (Tabelas 32 e 33) e ilustrada pelos *boxplots* dos efeitos principais (Figuras 49 a 55).

O fator "porto de desembarque" foi a principal fonte de variação dos valores de *CPUE* calculados (Tabelas 32 e 33). De forma geral, os melhores

rendimentos foram obtidos nos desembarques dos portos de Niterói e Santos (Figura 49). De acordo com o modelo, os desembarques em Ubatuba apresentaram rendimentos 80% menores dos que seriam esperados em Niterói (1-e^{-1,6049}). De forma objetiva, este resultado indica que o poder de pesca dos barcos que desembarcam em Niterói e em Santos é equivalente, e significativamente maior do que aqueles que normalmente descarregam suas capturas em Ubatuba. O fator "porto de desembarque" acaba por expressar as características de capturabilidade das embarcações e dos aparelhos de pesca utilizados pelas embarcações baseadas nos diferentes portos.

A faixa de latitude foi outro fator que afetou fortemente o rendimento das pescarias (Tabela 32). As operações realizadas em áreas mais ao sul obtiveram taxas de captura significativamente maiores do que as realizadas na porção setentrional da área de estudo (Figura 50). Por exemplo, as capturas de *Lopholatilus villarii* esperadas para áreas entre as latitudes 26° e 28°S são 50% maiores ($e^{0,4408}$) do que as esperadas para as latitudes de 22° a 24°S (Tabela 33).

O terceiro fator de maior efeito sobre a *CPUE* foi o ano, porém não de forma sistemática (Tabelas 32 e 33). Os melhores rendimentos foram registrados em 1996 e 1997, mas estes não chegaram a ser significativamente diferentes dos valores de 1999 (F: P = 0,22). O ano de 1996 foi o que apresentou as menores médias de taxa de captura (Figura 51).

A variação sazonal, representada pelo fator trimestre, e a variação longitudinal também se correlacionaram de forma significativa com os dados de *CPUE* (F: P < 0,05, Tabela 32). A variação sazonal indicou uma expectativa de melhores taxas de capturas nos meses de janeiro a março (Figura 52). Todavia este padrão sazonal apresentou interações significativas com o porto de desembarque e o com o ano. A variação da *CPUE* em função da variação longitudinal seguiu a mesma tendência observada para a latitude. Considerando que na área de estudo as pescarias realizadas nas menores longitudes foram também as de latitudes menores, os maiores rendimentos esperados foram calculados para a porção ocidental da área de estudo.

As interações da variável trimestre com as variáveis porto e ano, indicam que a tendência geral de obtenção de melhores rendimentos no primeiro trimestre de cada ano variou com o ano e entre os portos (Figuras 54 e 55). Os

maiores desvios desta tendência foram para o porto de Ubatuba, onde os melhores rendimentos foram obtidos no segundo e terceiro trimestres, e para o segundo trimestre de 1998, quando foram obtidos rendimentos bastante superiores aos do primeiro trimestre. A magnitude e significância das interações observadas podem ser examinadas detalhadamente na Tabela 33 que mostra, por exemplo, valores positivos relativamente altos e indica valores-*P* significativos (*P*<0,05) para os coeficientes $\beta \varphi_{32}$, $\beta \varphi_{33} e \delta \varphi_{32}$.

A Figura 56 mostra a variação das médias trimestrais de *CPUE* de *Lopholatilus villarii* observadas e preditas pelo modelo. Nesta pode-se observar que os valores indicados para os desembarques de Ubatuba são sensivelmente menores e que há uma tendência de melhores rendimentos nos dois primeiros trimestres de cada ano. No entanto, esta figura não reflete totalmente as reais variações do rendimento da pesca, uma vez que não explicita o efeito do local de pesca, que mostrou ser de alta significância.

A padronização da *CPUE* para porto, latitude, trimestre, longitude e interações porto-trimestre e ano-trimestre permite que os valores anuais de *CPUE* sejam estimados sem o efeito destas variáveis. Desta forma, a taxa de captura obtida por embarcações de diferentes origens, em áreas e períodos distintos, pode ser comparada diretamente. A *CPUE* padronizada média da pesca de linha-de-fundo realizada entre os paralelos 22 e 28°S nos anos de 1996 e 1999 variou de 169 a 113 quilogramas por dia de pesca (Figura 57). Embora os maiores valores tenham sido obtidos para os dois primeiros anos, apenas o ano de 1998 apresentou valores significativamente menores.

5.3 DINÂMICA POPULACIONAL DE Lopholatilus villarii

5.3.1 ESTRUTURA DE COMPRIMENTOS

Nos anos de 1994 a 1999 foram medidos 14799 espécimes de *Lopholatilus villarii* provenientes de operações de pesca realizadas entre as latitudes de 22 e 28°S (Tabela 34). O maior peixe medido teve comprimento furcal de 1153 mm. Para o total da amostra os comprimentos furcais médio e o mediano foram respectivamente de 593,3 e 576 mm. O tamanho médio de captura no período, estimado através da curva de captura, foi de 554,7 mm (Figura 58) de acordo com a equação $P = 1 \div [1 + e^{-0.0133(Lf - 554,7)}]$

Os comprimentos furcais diferiram significativamente entre os anos (ANOVA e Kruskal-Wallis: P = < 2,2e-16) e suas médias e medianas mostraram uma tendência linear de queda significativa (ANOVA: P = 0,0115 e 0,0021), variando respectivamente de 637,7 e 620 mm em 1994 para 554,6 e 526 mm em 1999 (Figura 59). Na Figura 60 encontra-se representada a distribuição anual de freqüência por classe de comprimento.

A análise da variação do comprimento furcal em função do local de pesca, realizada com base nos dados obtidos no B/P *Margus II*, indicou que esta medida variou principalmente com a profundidade e a longitude. A variação latitudinal e sua interação com a profundidade também apresentaram efeitos significativos (Tabela 35). Os comprimentos medidos apresentaram distribuição aproximadamente gama (KS: P = 0,1629, Figura 61) e a deviância residual do modelo mostrou-se relativamente bem distribuída (Figuras 62 e 63).

Os peixes de maior tamanho tenderam a ser capturados em maiores profundidades e nas porções oriental e meridional da área de estudo (Figuras 64 e 65). A interação entre as variáveis explicativas profundidade e latitude indica que a variação do comprimento em função da latitude não ocorreu de forma homogênea em diferentes batimetrias. Na Figura 65 pode-se observar que o efeito da latitude sobre a variação do comprimento foi maior nas profundidades menores.

5.3.2 RELAÇÕES BIOMÉTRICAS

De um total de 8309 indivíduos capturados nos cruzeiros de pesquisa, 1588 foram amostrados para a observação das condições biológicas e das relações de tamanho. A proporção de machos e fêmeas foi de 1 para 1,27, e não chegou a representar uma diferença significativa (χ^2 : *P* = 0,2287). Os indivíduos cujo sexo não foi identificado ou observado corresponderam a apenas 6,4% do total.

Os machos apresentaram comprimentos furcais e pesos totais maiores que as fêmeas (comprimentos - teste T: P = 7,766e-11; Wilcoxon: P = 4,086e-06; pesos - teste T: P = 9,636e-14; Wilcoxon: P = 3,657e-05). Foram medidos machos com até 1048 mm. Nas Figuras 66 e 67 estão representadas as variações destas medidas por sexo. A relação linear entre os comprimentos furcal e padrão (Ls~Lf) e furcal e total (Lt~Lf) não mostrou diferenças significativas de inclinação (*b*) ou de intercepção (*a*) entre os sexos (ANCOVA: Ls~Lf Pb = 0,9570 e Pa = 0,5199; Lt~Lf Pb = 0,6125 e Pa = 0,4680). Os coeficientes lineares e angulares destas regressões, por sexo e para sexos agrupados, encontram-se indicados nas Tabelas 36 e 37, juntamente com seus intervalos de confiança, níveis de significância e coeficientes de determinação. Os resíduos destas regressões não apresentaram tendências significativas (ANOVA: P = 1). As retas de regressão Ls~Lf e Lt~Lf e os diagramas de dispersão de seus resíduos encontram-se apresentadas nas Figuras 68 a 71.

Os coeficientes da regressão comprimento-peso, calculados para machos e fêmeas também não diferiram de forma significativa entre os sexos (χ^2 : *P* = 0,3125). Os coeficientes das regressões de potência do peso total sobre o comprimento furcal (Wt~Lf), por sexo e para sexos agrupados, encontram-se indicados na Tabela 38. Os resíduos destas regressões também não apresentaram tendências significativas (ANOVA: *P* = 0,7553). A curva Wt~Lf e o diagrama de dispersão de seus resíduos estão representados respectivamente nas Figuras 72 e 73.

5.3.3 CICLO REPRODUTIVO

Embora a proporção entre o número total de machos e de fêmeas não tenha sido significativamente diferente, a proporção sexual por classe de comprimento indicou que as fêmeas foram maioria, ou tão numerosas quanto os machos, até a classe de 690 a 720 mm. A partir desta classe de comprimento os machos passaram a predominar de forma altamente significativa (Tabela 39 e Figura 74).

O número de indivíduos do sexo feminino com gônadas em maturação, maduras ou desovadas, classificadas como adultas, passou a ser proporcionalmente maior do que aquelas com gônadas imaturas (juvenis), a partir da classe de comprimento furcal 390-420 mm (Figura 75). Para os machos, a classe a partir da qual os indivíduos adultos passaram a predominar de forma significativa foi de 480-510 mm (Figura 76). O ajuste dos parâmetros da curva sigmóide indicou um comprimento furcal médio de primeira maturação de 336,5 mm e 426,4 mm, para fêmeas e machos respectivamente (Figuras 77 e 78), de acordo com as equações Fêmeas: $P = 1 \div [1 + e^{-0.0192(Lf - 336,5)}]$, r²= 0,9672

Machos: $P = 1 \div [1 + e^{-0.0131(Lf - 426.4)}]$, r²= 0,9651

Os indicadores da atividade reprodutiva, como estágio de maturidade gonadal, tamanho da gônada e fator de condição, indicaram os meses de setembro a dezembro como sendo o provável período de desova das fêmeas de *Lopholatilus villarii*. A análise da freqüência de ocorrência bimestral dos diferentes estágios de maturação gonadal das fêmeas mostrou que espécimes maduros ocorreram principalmente no quinto e sexto bimestres (setembro a dezembro), e que os desovados foram freqüentes no primeiro bimestre (janeiro e fevereiro, Figura 79). Por sua vez, a média bimestral do índice gonadossomático também apresentou valores expressivamente maiores nos meses de setembro e outubro (Figura 80). Este índice não pôde ser calculado para o sexto bimestre, uma vez que não foram registradas informações sobre o peso de gônadas nos meses de novembro e dezembro. O acompanhamento da variação dos fatores de condição, calculados a partir dos pesos total e eviscerado, mostrou que os menores valores médios foram calculados para o sexto bimestre (Figura 81), o que corrobora os resultados anteriores.

5.3.4 IDADE E CRESCIMENTO

Os 348 espécimes selecionados para o estudo de idade e crescimento estavam distribuídos entre as classes de 250 e 950 mm de comprimento furcal (Tabela 40). Nos meses de janeiro, julho e dezembro não foram obtidas amostras de otólitos (Tabela 41).

Do material selecionado foi possível medir o comprimento e a altura de 296 pares de otólitos, sendo 152 de machos e 144 de fêmeas. Em 52 indivíduos, um ou ambos os otólitos apresentaram as extremidades anteriores, normalmente mais finas e alongadas (Figura 82), danificadas e foram excluídos da análise de comparação entre o tamanho dos otólitos direito e esquerdo.

Mesmo após esta seleção, foi observada uma diferença significativa entre os comprimentos dos otólitos direito e esquerdo em machos e fêmeas (teste-t pareado e teste de Wilcoxon pareado: P < 0,05). No entanto, as diferenças

entre as alturas não foram significativas (teste-t pareado e teste de Wilcoxon pareado: $P \ge 0,05$). Os comprimentos dos otólitos direitos variaram de 9,70 a 25,90 mm para os machos, e de 9,30 a 24,15 mm para as fêmeas. As amplitudes de altura foram, respectivamente, de 6,60 a 16,95 mm e de 5,30 a 15,40 mm.

Do total dos 348 otólitos direitos lidos, 89,4% (311) foram considerados legíveis. O número de anéis em 140 otólitos de machos variou de 5 a 35 e, em 171 otólitos de fêmeas, de 5 a 23 (Tabela 42).

A análise da variação mensal das porcentagens de bordas opacas e translúcidas indicou que, provavelmente, a formação dos anéis etários é anual, com o início da deposição da banda opaca no começo do ano (Figura 84). A falta de amostras nos meses de dezembro e janeiro prejudicou a análise.

A análise da variação do incremento marginal, por si só, não foi conclusiva. O número amostral não permitiu o cálculo do incremento mensal por número de anéis observados, e o pequeno aumento do raio total nos indivíduos maiores resultou em uma grande amplitude em todos os meses (Figura 85). No entanto, os incrementos marginais calculados para os meses do segundo semestre foram significativamente maiores do que os do primeiro semestre (teste-t: P= 0,0018; teste de Wilcoxon: P= 0,0138). Isto confirma a hipótese de que o início da deposição do anel opaco se dá no começo de cada ano, o que resulta na observação de incrementos marginais maiores e bordas translúcidas mais numerosas no segundo semestre.

A relação entre o raio total do otólito (*Rt*) e o comprimento furcal (*Lf*) de machos e fêmeas de *Lopholatilus villarii* foi descrita através das equações logísticas:

Machos:
$$Lf = \frac{959,6025}{1+14,6895 \times 0,2206^{Rt}}$$
, r²= 0,9143

Fêmeas:
$$Lf = \frac{835,2993}{1+7,9468 \times 0,2812^{Rt}}$$
, r²= 0,8437

As curvas de regressão ajustaram-se adequadamente aos dados, resultando em coeficientes de determinação altos e resíduos sem tendências significativas (ANOVA: P_{machos} = 0,9479 e $P_{fémeas}$ = 0,9952; Figuras 86 a 89). Na Tabela 43 encontram-se indicados os coeficientes de ajuste das equações, seu intervalo de confiança para o nível de significância de 5%, o nível de

significância de cada coeficiente e valor do coeficiente de determinação das regressões. A comparação das curvas obtidas para os diferentes sexos através da razão de verossimilhança máxima (Kimura, 1980; Cerrato, 1990) indicou uma diferença altamente significativa (χ^2 : *P* << 0,001).

Os comprimentos furcais médios retrocalculados para os machos variaram de 106 mm na idade 1 a 969 mm na idade 35. Para as fêmeas, foram retrocalculados comprimentos médios de 134 mm na idade 1 a 705 mm na idade 23. Os comprimentos retrocalculados para os sexos agrupados variaram de 121 a 969 mm, respectivamente para as idades 1 e 35 (Tabelas 44 a 46).

As equações de von Bertalanffy ajustadas para os dados de comprimento médio ponderado e seus respectivos índices de performance de crescimento (ϕ') foram:

Machos:	$Lf = 1045,17 \left[1 - e^{-0.0792(t-0.1976)} \right], \ \phi' = 4,94$
Fêmeas:	$Lf = 1151,54 \left[1 - e^{-0.0430(t+1.6398)} \right], \ \phi' = 4,76$
Sexos agrupados:	$Lf = 1205,18 \left[1 - e^{-0.0492(t+0.8212)} \right], \ \phi'=4,85$

Para o conjunto de análises de regressão que assumiu a correlação entre os comprimentos furcais retrocalculados de cada peixe foram obtidas as estimativas:

Machos:	$Lf = 1452, 12 \left[1 - e^{-0.0438(t+0.7226)} \right], \ \phi' = 4,97$
Fêmeas:	$Lf = 1210,47 \left[1 - e^{0.0381(t+2.0824)} \right], \phi'= 4,75$
Sexos agrupados:	$Lf = 1330,75 \left[1 - e^{-0.0404(t+1.3600)} \right], \ \phi'=4.85$

O ajuste dos parâmetros da curva de von Bertalanffy para os dados de comprimento-na-idade de captura forneceu os seguintes valores:

Machos:	$Lf = 1036,62 \left[1 - e^{-0.0843(t+0.0798)} \right], \ \phi' = 4,96$
Fêmeas:	$Lf = 1789,94 \left[1 - e^{0.0199(t+4.8696)} \right], \phi'= 4.81$
Sexos agrupados:	$Lf = 1160,90 \left[1 - e^{-0.0474(t+2,3815)} \right], \phi' = 4,81$

Os valores dos parâmetros da equação de von Bertalanffy por sexo e modelo utilizado, seus intervalos de confiança e os respectivos valores de performance de crescimento encontram-se tabulados na Tabela 47. As curvas de crescimento por sexo e modelo utilizado estão representadas nas Figuras 90 a 98.

Os índices de performance de crescimento calculados não diferiram muito entre si, indicando que, apesar das variações nas estimativas dos parâmetros, o padrão geral de crescimento é bastante semelhante. Para as análises subseqüentes optou-se pela utilização dos parâmetros ajustados pelo método que assumiu a correlação entre os comprimentos furcais retrocalculados.

A chave comprimento-idade (Tabela 48) indica a composição etária relativa por classe de comprimento furcal. As idades iguais ou maiores que 24 foram agrupadas na classe etária 24+.

5.3.5 TAXAS DE MORTALIDADE

As estimativas da taxa instantânea de mortalidade total (*Z*) calculadas para os diferentes anos variaram de 0,16 a 0,24 ano⁻¹, correspondendo às taxas de sobrevivência (*S*) de 85 a 78% ano⁻¹ (Tabela 49).

Pelo método da curva de captura linearizada, a estimativa da idade em que a espécie passou a ser totalmente explotada pela pesca variou de 14,3 anos, em 1994, 1995 e 1996, a 12,6 anos, em 1997 e 1998, e depois caiu para 11,05 anos em 1999 (Figuras 99 a 104). Estes resultados indicam a tendência progressiva de uma maior participação de indivíduos mais jovens na composição das pescarias, o que provavelmente decorre da retirada dos indivíduos maiores e mais velhos pela atividade pesqueira.

As inclinações das retas de regressão (Figuras 99 a 104) foram significativamente diferentes (ANCOVA: P= 0,0433). Os valores calculados para o ano de 1994 diferiram dos de 1995 (Tukey: 0,05>P>0,01) e dos de 1998 e 1999 (Tukey: P<0,01), e o valor de Z para 1996 foi significativamente diferente do de 1998 (Tukey: 0,05>P>0,01). Este padrão de variação sugere que houve uma tendência de aumento nos valores da taxa de mortalidade total no período estudado e, por conseguinte, uma menor taxa de sobrevivência por ano.

As taxas de mortalidade natural (*M*) foram calculadas a partir dos parâmetros:

Tm = 40 anos

 Lt_{∞} = 138,28 cm (Lt correspondente a 133,08 cm Lf)

K = $0,0404 \text{ ano}^{-1}$

T = 15°C

Tm50% = 6 anos (equivalente ao comprimento furcal de primeira maturação das fêmeas, 336,5 mm)

As estimativas obtidas foram:

Alagaraja 0,1151 ano⁻¹

Hoening...... 0,1027 ano⁻¹

Pauly 0,1079 ano⁻¹

Rikther e Efanov... 0,2883 ano⁻¹

A estimativa dada pelo método de Rikther e Efanov foi descartada, uma vez que seu valor ultrapassa o da maior taxa de mortalidade total calculada, de 0,24 ano⁻¹. Os valores apresentados pelos demais métodos empíricos são de aproximadamente 0,11 ano⁻¹, o que parece ser mais adequado.

5.3.6 ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE Lopholatilus villarii

O método de análise de população virtual permitiu a construção de uma população teórica, baseada nos parâmetros populacionais e nos dados de desembarque estudados nas seções anteriores.

A partir do cálculo do peso esperado, *Wt*, para o meio de cada classe de comprimento furcal, *Lf*, (Tabela 50) com a equação:

$Wt = 4,26e-06 \times Lf^{3,187}$

e dos dados amostrais de distribuição de freqüência por classes de comprimento (Tabela 34), obteve-se a estimativa do peso amostrado por classe de comprimento (Tabela 51) e a contribuição relativa do peso de cada classe (Tabela 52).

Tendo os desembarques totais das capturas de *Lopholatilus villarii* realizadas na área de estudo por ano (Tabela 53), calculou-se o peso total desembarcado por classe de comprimento furcal (Tabela 54). O número total de indivíduos desembarcados (Tabela 55) foi estimado dividindo-se o peso desembarcado por classe de comprimento furcal (Tabela 54) pelo peso esperado para o meio de cada classe (Tabela 50).

A estimativa do número de indivíduos desembarcados por classe etária (Tabela 56, Figura 105) foi obtida aplicado-se as proporções de composição
etária por classe de comprimento furcal da chave comprimento-idade (Tabela 48) sobre o número de indivíduos desembarcados por classe de comprimento furcal (Tabela 55). As estimativas de tamanho total do estoque foram feitas para as idades iguais ou superiores a 5 anos, uma vez que não houveram estimativas de números de indivíduos capturados nas classes mais jovens.

A Tabela 57 e a Figura 106 mostram as estimativas da taxa instantânea de mortalidade por pesca (*F*) por ano e classe etária e na Tabela 58 encontram-se as taxas médias de mortalidade por pesca estimadas para diferentes faixas de idade, agrupando-se os anos de 1995 a 1998, sempre assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹. A Tabela 59 apresenta as estimativas de números de indivíduos por classe etária no início de cada ano, estimados a partir da matriz de *F*s (Tabela 57). Os valores médios de número de indivíduos e de biomassa, por ano e classe etária, são apresentados nas Tabelas 60 e 61 e nas Figuras 107 e 108. A produção pesqueira anual por classe etária estimada a partir da análise de população virtual está indicada na Tabela 62 e na Figura 109.

Para a análise de rendimento e biomassa-por-recruta (*Y/R* e *B/R*) foram utilizados os seguintes parâmetros: K= 0,0404 ano⁻¹; M= 0,11 ano⁻¹, W_{∞} = 38.539 g e Tr= 1 anos e Tc=5 anos. Os resultados obtidos indicam que com uma taxa de mortalidade por pesca de 0,10 ano⁻¹ seria atingido o rendimento máximo de 670 g por recruta e a biomassa com um nível de biomassa correspondente a 25% da biomassa do estoque virgem. Uma taxa de mortalidade por pesca 0,06 ano⁻¹, equivalente ao $F_{0,1}$, resultaria em um rendimento por recruta de 627 g e a manutenção de 39% da biomassa do estoque original (Tabela 63 e Figura 110).

Na Tabela 64 e da Figura 111 encontra-se representado o efeito da variação conjunta da taxa de mortalidade por pesca (*F*) e da idade de primeira captura (*Tc*) sobre as estimativas de F_{max} e $F_{0,1}$. Na Tabela 65 e na Figura 112 são indicadas as taxas F_{max} e $F_{0,1}$ para diferentes valores de mortalidade natural (*M*) e por pesca (*F*) para uma idade média de primeira captura de 10 anos.

O modelo de Thompson e Bell indicou que, em uma situação de equilíbrio a partir dos resultados da análise de população virtual para 1999, é esperada uma produção anual de 224 t de *Lopholatilus villarii*, com uma biomassa média de 1229 t ao ano (Tabela 66). A variação dos valores de mortalidade por pesca (*F*) indicou que o atual nível de esforço encontra-se além da capacidade de suporte do estoque. O rendimento máximo da pescaria (F_{max}) seria obtido com 40% do *F* atual e o $F_{0,1}$ com apenas 10% (Figura 113).

6 DISCUSSÃO

6.1 DIVERSIDADE, DISTRIBUIÇÃO E ABUNDÂNCIA

O aumento da demanda mundial por pescado e o desenvolvimento de tecnologias com baixo custo, têm estimulado a explotação de recursos pesqueiros em ambientes marinhos situados além das plataformas continentais (Dayton *et al.*, 1995).

No Brasil, os estoques de recursos pesqueiros costeiros tradicionais têm sido explotados ao nível de produção máxima sustentável e alguns deles já apresentam claras evidências de sobrepesca. A capacidade excessiva de esforço de pesca obriga os barcos trabalharem com uma baixa margem de lucro e qualquer sinal de descoberta de um novo estoque potencial desencadeia uma corrida de embarcações (Matsuura, 1995). Considerando este cenário e seguindo a tendência mundial, a expansão das pescarias de profundidade no Brasil é considerada uma alternativa à necessária redução de esforço sobre a plataforma continental (Perez *et al.*, 2001).

Todavia, deve-se atentar ao fato de que as comunidades que habitam estas regiões apresentam algumas adaptações de ciclo de vida, como crescimento lento, alta longevidade, idade de maturação tardia, pouca vicariância e baixa taxa de mortalidade natural, que indicam ecossistemas com baixas produtividade e reciclagem, extremamente vulneráveis à intervenção humana (Dayton *et al.*, 1995; Coleman *et al.*, 2000). O aumento das atividades da pesca comercial para níveis incompatíveis com a capacidade de suporte destes ambientes pode levar à depleção dos recursos e a efeitos ecológicos imprevisíveis (Uiblein *et al.*, 1996). Conseqüentemente, a identificação das assembléias de peixes, aqui definidas como um conjunto de organismos que devido a respostas e a preferências ambientais independentes mas comuns, tendem a ocorrer juntos, torna-se uma pré-condição para a compreensão dos estoques multiespecíficos e da posição das espécies-alvo das pescarias no sistema (Caddy e Sharp, 1986; Longhurst e Pauly, 1987).

As técnicas de captura com linha e anzol, como o espinhel-de-fundo, formam uma das maiores e mais tradicionais categorias de pesca em todo o mundo (Bjordal e Løkkeborg, 1996). Devido às suas características operacionais têm sido utilizadas em importantes pescarias demersais, como a de *Hippoglossus stenolepis* ("halibut") e *Anoplopoma fimbria* ("sablefish") na margem leste do Oceano Pacífico Norte e dos gadiformes *Gadus morhua* ("cod"), *Melanogrammus aeglefinus* ("haddock") e *Brosme brosme* ("tusk") no Atlântico Norte (Sigler e Zenger, 1987; Sadorus e St-Pierre, 1995; Bjordal e Løkkeborg, 1996).

O espinhel-de-fundo também tem sido empregado na pesquisa exploratória e no monitoramento de diversos estoques pesqueiros de quebra de plataforma e talude (Badenhorst, 1988; Sadorus e St-Pierre, 1995; Uiblein *et al.*, 1996; Kimura e Zenger, 1997; Uiblein *et al.*, 1998). Embora a seletividade deste aparelho de pesca possa agir como um fator limitante na detecção de padrões de diversidade, abundância local e distribuição batimétrica da totalidade da assembléia de peixes (Uiblein *et al.*, 1996), as informações sobre a vulnerabilidade por pesca causada sobre mais que um estoque em uma única pescaria (Jennings *et al.*, 2001), são de extrema importância para a planificação das ações de manejo.

Nas operações de pesca realizadas pelo N/Pq *Orion* e pelo B/P *Margus II* foram capturadas 43 categorias de peixes, sendo a maioria correspondente a espécies e as restantes a gêneros (Tabela 3). Os peixes ósseos *Lopholatilus villarii, Urophycis cirrata, Helicolenus dactylopterus lahillei, Epinephelus niveatus* e *Pseudopercis numida*, e os peixes cartilaginosos do gênero *Squalus* foram os mais numerosos nas capturas de ambas as embarcações, representando respectivamente 82 e 92% do número total de peixes.

Por seu caráter seletivo, o número de espécies capturadas em operações de espinhel-de-fundo é normalmente inferior aos números obtidos na pesca de arrasto-de-fundo (Bjordal e Løkkeborg, 1996), método amplamente utilizado na pesquisa pesqueira. A título de comparação, em áreas mais costeiras próximas à área de estudo, foram reportadas ocorrências de cerca de 100 espécies de peixes em operações de arrasto-de-fundo (Rossi-Wongtschowski e Paes, 1993; Facchini, 1995; Muto *et al.*, 2000). Nas capturas de barcos espinheleiros-de-

fundo e arrasteiros arrendados, que operaram ao largo da costa sudeste-sul do Brasil até a isóbata de 866 m, nos anos de 2000 e 2001, foram identificadas, respectivamente, 15 e 38 espécies de peixes teleósteos (Perez *et al.*, 2001).

Algumas das principais espécies capturadas, como *Helicolenus dactylopterus lahillei, Polyprion americanus* e *Pagrus pagrus*, têm registros de ocorrência em operações de espinhel-de-fundo na costa Africana e sul da Europa (Badenhorst, 1988; Erzini *et al.*, 1995; Uiblein *et al.*, 1996; Uiblein *et al.*, 1998). Além destas, *Epinephelus niveatus* e espécies dos gêneros *Lopholatilus* e *Urophycis* ocorrem ao longo da costa oeste do Atlântico (Able *et al.*, 1982; Turner, 1986; Parker e Mays, 1998; Coleman *et al.*, 2000). Estas espécies são classificadas como espécies demersais e bati-demersais subtropicais e algumas compõem parte da comunidade de Esparídeos (Longhurst e Pauly, 1987), equivalendo também ao chamado Complexo Chernes-vermelhos (*Grouper-Snapper Complex,* Coleman *et al.*, 2000).

Os resultados apresentados neste estudo mostraram que a profundidade foi a maior fonte de variação para a abundância relativa das capturas e de suas diversidade e equitatividade. O efeito da variação da latitude ou de sua interação com a profundidade mostrou ser secundário. Como um padrão geral, a *CPUE* tendeu a ser mais elevada em áreas de maiores batimetrias. Para as profundidades maiores que 300 m foram calculados valores de *CPUE* significativamente mais altos nos meses de outono. Os índices de diversidade de Shannon e de equitatividade tiveram tendências opostas à da *CPUE*. As capturas mais diversas e equitativas foram obtidas nas áreas mais rasas.

A importância do fator profundidade sobre a estrutura das comunidades demersais é bem conhecida pois reflete o efeito de diversas outras variáveis, como distribuição de massas d'água, tipo de sedimento e intensidade luminosa (Scott, 1982; Caddy e Sharp, 1986; Bianchi, 1991). Em áreas tropicais é esperado que as maiores densidades de biomassa sejam registradas nas proximidades da plataforma continental (Longhurst e Pauly, 1987), mas as taxas de captura comparativamente mais elevadas obtidas em profundidades maiores, podem ser resultantes da composição das características oceanográficas regionais, das relações tróficas das espécies demersais e do padrão de pesca da frota comercial. Resultados semelhantes aos deste trabalho foram obtidos por Bianchi (1991 e 1992) que a partir da análise das

capturas de arrasto-de-fundo na costa Atlântica do México, Costa Rica, Congo e Gabão, atribuiu a distribuição da biomassa demersal ao processo de enriquecimento causado por ressurgências sazonais nessas regiões.

Na Plataforma Continental do Sudeste, a quantidade de descarga fluvial não é grande (Castro e Miranda, 1998) e a dinâmica da ACAS tem sido indicada como um importante fator para o processo de eutrofização natural, influenciando diretamente os ciclos biológicos na região (Aidar *et al.*, 1993; Pires-Vanin *et al.*, 1993). Vórtices frontais entre a AC e a AT, causados pelo meandramento da corrente do Brasil ao longo da quebra da plataforma, são responsáveis pela ascensão da ACAS, rica em nutrientes, para a zona eufótica em regiões do domínio externo e de quebra da plataforma. A biomassa fitoplanctônica gerada é consumida rapidamente e o material biogênico resultante é transportado das camadas superiores para o fundo (Aidar *et al.*, 1993; Gaeta, 1999).

Além da sedimentação de partículas da coluna d'água, a disponibilização de alimentos para os peixes demersais pode se dar através de migrações verticais de organismos. Por exemplo, *Illex argentinus* (calamar) alimenta-se durante a noite na superfície, permanecendo durante o dia próximo ao fundo, onde é predada por *Polyprion americanus* e provavelmente por *Galeorhinus galeus* (Castello *et al.*, 1997). Já o demersal *Pagrus pagrus* alimenta-se de organismos bentônicos e pelágicos (Capítoli e Haimovici, 1993).

Aliado às dinâmicas oceanográfica e trófica, o menor direcionamento de esforço pesqueiro para as áreas de maior profundidade também pode ser um dos fatores determinantes do melhor rendimento pesqueiro obtido nestas áreas. Segundo Carneiro et al. (2000), tomando por base a atuação das frotas pesqueiras paulistas nos anos de 1998 e 1999, os ambientes mais explotados ainda são o pelágico costeiro (< 100 m de profundidade) e o demersal costeiro interno (< 50 m de profundidade). A pesca além da isóbata de 100 m é realizada esporadicamente com arrasto-de-fundo duplo e, principalmente, com espinhel-de-fundo. Tradicionalmente, apenas embarcações utilizando aparelhos de pesca operados manualmente, como pequenos espinhéis-defundo, linhas-de-mão ou boinhas, realizavam capturas em profundidades superiores a 100 m. Apenas a partir da década de 90, as pescarias além da isóbata de 300 m tornaram-se comuns (Santos *et al.*, 1988; Barcellos *et al.*, 1991; Peres e Haimovici, 1998; Ávila-da-Silva *et al.*, 2001).

Devido à característica de área de transição zoogeográfica, influenciada tanto por regimes tropicais, mais diversos na composição de espécies, quanto por regimes subtropicais (Figueiredo, 1981; Longhurst e Pauly, 1987) a área de estudo apresentou marcantes variações nos índices ecológicos de diversidade e eqüitatividade. As áreas mais rasas, que recebem influência da mistura entre a ACAS e a AC, apresentaram uma forte variação destes índices ao longo da costa, com valores decrescendo em direção sul. As porções mais profundas, permanentemente cobertas pela ACAS, mostraram valores menores e mais homogêneos. Estas áreas foram marcadas por altas abundâncias de espécies subtropicais, como *Urophycis cirrata* e, na porção meridional, *Helicolenus dactylopterus lahillei*. Nas áreas de menor profundidade, as abundâncias foram menores e ocorreram espécies características de regiões tropicais, como *Pseudopercis numida, Epinephelus niveatus* e *Gymnotorax* spp..

No cruzeiro de outono do B/P *Margus II* observou-se que *Urophycis cirrata* também apresentou importantes capturas entre as isóbatas de 100 e 300 m, e em áreas mais setentrionais do que as observadas no cruzeiro de primavera, o que provavelmente está relacionado ao avanço da ACAS sobre a plataforma nos meses de verão. *Lopholatilus villarii* mostrou ampla distribuição e abundância, figurando como uma das principais espécies capturadas em praticamente todas as faixas de profundidade e de latitude.

A análise de classificação de espécies indicadoras em duas vias (TWINSPAN) e de espécies indicadoras, definiu de forma mais detalhada as assembléias de peixes, suas localizações e as principais espécies vulneráveis ou indicadoras. Posteriormente, a análise canônica de correspondência (ACC) indicou a direção e a magnitude dos efeitos das variáveis ambientais registradas sobre a distribuição das espécies de peixes capturadas. Esta análise, mesmo sem as informações sobre o tipo de fundo e temperatura, chegou a explicar cerca de 24% da variação total da distribuição das capturas.

O fator profundidade foi o que apresentou a maior correlação com o primeiro eixo canônico, separando claramente os grupos de peixes indicados pela análise de classificação. A divisão mais evidente ocorreu em torno da faixa batimétrica de 250 m, e provavelmente está relacionada com a profundidade da termoclina na área de estudo, delimitando as áreas sob influência permanente da ACAS daquelas com influência da AC e da AT.

Nos domínios de quebra de plataforma, evidenciou-se outra divisão relacionada aos gradientes latitudinal e longitudinal, altamente correlacionados ao segundo eixo canônico. *Pagrus pagrus*, *Caulolatilus chrysops* e os cações do gênero *Mustelus*, foram espécies indicativas do grupo de estações de pesca realizadas ao norte de 24°S, onde fundos arenosos e de areia cascalhosa de composição bioclástica e biolitoclástica são freqüentes (Figueiredo e Madureira, 1999).

Ainda no domínio de quebra de plataforma, os cações do gênero Squalus e da espécie Heptranchias perlo apresentaram uma distribuição ampla, tendendo a ser mais abundantes e freqüentes nas maiores latitudes sobre fundos recobertos predominantemente por lamas (Figueiredo e Madureira, 1999). Lopholatilus villarii associou-se a estes cações nas capturas realizadas na porção mais meridional e profunda, enquanto Epinephelus niveatus, Pseudopercis numida, Gymnothorax spp. e Scyliorhinus haeckelli associaramse a estes em áreas mais ao norte e, no caso da última espécie, na áreas mais profundas deste domínio.

No domínio do talude superior (250 a 500 m), o gradiente batimétrico também foi o fator mais correlacionado com a distribuição das assembléias de peixes. *Lopholatilus villarii, Genypterus brasiliensis, Urophycis cirrata* e *Merluccius hubbsi* tenderam a ocorrer na parte superior deste domínio, enquanto *Polymixia lowei, Polyprion americanus, Helicolenus dactylopterus lahillei* e *Carcharhinus* spp., nas maiores profundidades.

A caracterização das associações de espécies do talude superior ao longo da costa foi menos evidente do que a observada na região de quebra de plataforma. As espécies *Genypterus brasiliensis* e *Merluccius hubbsi* foram mais abundantes nas operações realizadas na porção setentrional da área de estudo, onde o fundo é em geral formado por areias e cascalhos, com relevo de gradiente elevado. *Polyprion americanus* e *Helicolenus dactylopterus lahillei* foram mais capturados na porção sul, onde a presença de lamas é mais constante (Figueiredo e Madureira, 1999).

Embora as assembléias de peixes identificadas tenham sido relacionadas às tendências de variação de tipos de fundo descritas por Figueiredo e Madureira (1999) e aos padrões de distribuição de massas d'água, estas características são apropriadas apenas para definir grandes áreas ou "megahabitats". No entanto, a distribuição, abundância e a diversidade de peixes demersais varia na escala de "mesohabitats", ou seja, de acordo com características que possuem de dezenas de metros a um quilômetro, que inclui pequenas elevações marinhas, bancos, recifes e afloramentos rochosos (Greene *et al.*, 1999).

Muto *et al.* (2000) estudando as assembléias de peixes ao largo de São Sebastião, área mais rasa adjacente à área coberta por este trabalho, obteve com a análise canônica de correspondência uma explicação de 51% da distribuição da ictiofauna e identificou os gradientes de temperatura, de oxigênio e de granulometria de areias como os mais importantes. Miyaji (2001) analisando a distribuição de gastrópodes prosobrânquios com metodologia semelhante, na mesma área coberta pelo presente estudo, obteve 27,6% da variação total explicada, sendo 7% de variação puramente espacial, 14,3% ambiental não espacial e 6,3% compartilhada. Os principais descritores ambientais foram a profundidade, a porcentagem de carbonato de cálcio e a granulometria do sedimento.

Grossman *et al.* (1985) estudaram a relação entre a abundância de *Lopholatilus chamaeleonticeps* e a composição de sedimentos ao largo da Georgia, Estados Unidos, e concluíram que três quartos da variação da taxa de captura desta espécie estava relacionada à fração de silte e argila no substrato. *Lopholatilus chamaeleonticeps* foi mais abundante nas capturas com espinhelde-fundo sobre áreas de sedimentos finos.

A informação sobre habitats bentônicos é importante para a compreensão e predição da distribuição espacial e da abundância de muitas espécies de peixes, uma vez que cada tipo de fundo suporta uma comunidade de invertebrados típica que, por sua vez, deve suportar uma ictiofauna característica (Scott, 1982). Mesmo que os gradientes físico-químicos e o impacto da atividade antrópica sejam mais marcantes na região de plataforma, o que justificaria a maior porcentagem de explicação obtida sobre a plataforma continental por Muto *et al.* (2000), informações sobre temperatura, salinidade, tipo de fundo e fauna bentônica tomados *in situ* provavelmente poderiam definir com maior precisão o habitat preferencial dos peixes vulneráveis à pesca de espinhel-de-fundo.

6.2 ANÁLISE DAS CAPTURAS DA PESCA COMERCIAL

A forma com que as assembléias de peixes descritas têm sido explotadas pelas frotas pesqueiras é documentada de forma sistemática no Estado de São Paulo desde 1944 (Azevedo, 1945) e nos outros Estados da Federação a partir da década de 70, através do Sistema de Controle de Desembarque da SUDEPE (Zavala-Camin e Puzzi, 1974; Lima *et al.*, 1985).

Até a década de 60, a atividade pesqueira no Brasil era predominantemente artesanal e seu processo de desenvolvimento deu-se apenas no final dos anos 60 e início dos 70, em função dos incentivos fiscais aplicados à pesca (Vazzoler, 1975; Neiva, 1990). Neste período, com a modernização dos barcos, a área de pesca da frota de linha-de-fundo foi expandida da Região do Mar de Abrolhos (17 e 18°S) para a Região do Mar Novo (22 a 26°S) e para o sul do Cabo de Santa Marta Grande (Barcellos *et al.*, 1991; Paiva e Andrade, 1994).

Além da captura de espécies demersais, a pesca do pelágico *Coryphaena hippurus* pelos linheiros é tradicional (Zavala-Camin e Puzzi, 1974; Lima *et al.*, 1985). As análises dos desembarques da frota de linha-de-fundo nos Estados do Rio de Janeiro e São Paulo, entre 1996 e 1999, mostraram que sua ocorrência é marcadamente sazonal, com picos de abundância no terceiro e quarto trimestres, quando sofrem um forte direcionamento das capturas das embarcações baseadas em Niterói e Ubatuba. Esta espécie distribui-se nas águas tropicais e subtropicais dos oceanos e, na área de estudo, foi mais abundante nas menores latitudes. A sazonalidade de sua ocorrência está associada principalmente à elevação da temperatura da água de superfície nos meses de verão, causada pela maior incidência da radiação solar (Neumann e Pierson Jr., 1966; Palko *et al.*, 1982; Ávila-da-Silva e Vaz-dos-Santos, 2000).

Embora os diversos trabalhos escritos sobre a produção dos barcos linheiros nas décadas de 70, 80 e 90, não tragam informações comparáveis diretamente, pode-se, ao menos, traçar as tendências gerais das capturas e do rendimento pesqueiro ao longo deste período. Os dados de produção

disponíveis nos Estados do Rio de Janeiro e Espírito Santo referem-se, principalmente, ao reportado através dos mapas de bordo (Lima *et al.*, 1985; Paiva e Andrade-Tubino, 1998^a) e no Estado de São Paulo a entrevistas de desembarque (Ávila-da-Silva *et al.*, 1999).

No início da década de 70, a produção anual da frota de linha-de-fundo girava em torno de 4000 t, caindo para cerca de 3000 t no início de 80. Na primeira metade dos anos 80, houve uma tendência de aumento nas capturas, mas ao final desta década, a produção anual chegou a cerca de 2000 t. No início da década de 90, mesmo com os avanços tecnológicos introduzidos, a tendência de queda continuou e a produção anual na região do "Mar Novo" baixou para cerca de 1500 t em 1995 (Zavala-Camin e Puzzi, 1974; Lima *et al.*, 1985; Paiva e Andrade-Tubino, 1998^a e 1998^b). A diminuição dos desembarques de peixes demersais nos portos de Niterói, Ubatuba e Santos, de 1715 t em 1996, para 983 t em 1999 (Tabela 25), demonstra a continuidade desta tendência e, considerando o valor de mercado das espécies capturadas, sugere um decréscimo significativo da abundância dos estoques.

A composição das capturas de espécies demersais nesta região não variou muito desde a década de 70. As principais espécies-alvo da pescaria têm sido *Lopholatilus villarii*, *Pseudopercis numida* e *Epinephelus niveatus* (Lima *et al.*, 1985, Paiva e Andrade-Tubino, 1988^b; Ávila-da-Silva *et al.*, 2001). Espécies de ocorrência sazonal como *Coryphaena hippurus* e *Genidens barbus* tiveram uma importância localizada e foram alvo de forte direcionamento das pescarias.

Genidens barbus figurou entre os principais desembarques da pescaria de linha-de-fundo nos anos de 1998 e 1999, especialmente nos desembarques de Santos. Foi o direcionamento das capturas para esta espécie, em profundidades inferiores a 100 m, que causou o aumento da produção total e da *CPUE* nestes anos. Em 1999 esta espécie também passou a constar entre os principais desembarques em Niterói.

A pesca de *Genidens barbus* pela frota de espinhel-de-fundo de Santos iniciou-se de forma tímida em 1996, quando representou apenas 8% do total desembarcado. Já em 1998, com uma produção de 115,8 t (29%), foi a principal espécie desembarcada naquele porto. Em 1999 continuou a ser a espécie mais capturada, contribuindo com 39% do total dos desembarques.

Sua pesca tem caráter marcadamente sazonal, com pico de produção no 3° trimestre (Ávila-da-Silva e Ataliba, 2000; Ávila-da-Silva *et al.*, 2001). As capturas de *Micropogonias furnieri* estiveram associadas às de *Genidens barbus* e indicaram a explotação de uma assembléia de peixes diversa das definidas anteriormente.

O acompanhamento da variação da abundância dos estoques pesqueiros é normalmente realizado pela análise de dados de captura por unidade de esforço (*CPUE*) das frotas pesqueiras e pressupõe um coeficiente de capturabilidade constante. Todavia, na prática, a *CPUE* é afetada por diversos fatores que não o tamanho do estoque, como a área de captura, o aparelho de pesca, a época do ano e o tipo do barco (Gulland, 1983). Olsen e Laevastu (1983, *apud* Bjordal e Løkkeborg, 1996) descreveram 32 fatores que afetam a capturabilidade do espinhel e desenvolveram um modelo incorporando-os. Atualmente o método de padronização de esforço mais freqüentemente utilizado é o ajuste de modelos lineares generalizados aos dados de *CPUE* observados (Hilborn e Walters, 1992; Quinn e Deriso, 1999; Lima *et al.*, 2000; Lanssen e Medley, 2001).

Paiva e Fonteles-Filho (1997) compararam diversas medidas de esforço para descrever o rendimento da pesca dos barcos linheiros na região de Abrolhos e concluíram que as unidades "dia de pesca" e "anzol por dia" eram as mais adequadas. Segundo estes autores, o esforço medido em termos de "anzol por dia" é o que melhor incorpora todos os elementos que compõem o esforço. No presente trabalho, foi utilizado como medida do esforço o número efetivo de dias de pesca. A vantagem desta medida é a possibilidade de comparação das diferentes técnicas de pesca linha-de-fundo observadas, pois refere-se à produção diária efetiva do barco e não é influenciada pelo tempo de viagem ao local de pesca.

Os trabalhos já publicados sobre a variação da *CPUE* da pesca de linhade-fundo na região do "Mar Novo" apresentam os resultados em valores não padronizados, em diferentes medidas de esforço e, muitas vezes, com as espécies agrupadas. Neste trabalho, para fins de comparação e verificação de tendências gerais, a análise das pescarias também foi realizada utilizando-se a captura total de peixes demersais pelo esforço nominal (não padronizado). O ajuste de modelos lineares generalizados aos dados de *CPUE* foi efetuado para as capturas direcionadas ao *Lopholatilus villarii*.

Lima *et al.* (1985), utilizando como medida de esforço a captura por pescador por dia, na análise das pescarias de "Mar Novo" nos anos de 1974 a 1980, obtiveram uma *CPUE* média para o conjunto das capturas de 32,25 kg/pescador/dia, sem tendências significativas (ANOVA: P= 0,9477). Neste período, a frota do Estado do Rio de Janeiro era formada por cerca de 76 barcos. As embarcações com menos de 20 TBA mediam 11 m em média e possuíam cerca de 20 anos. As maiores que 20 TBA mediam 18 m em média e possuíam 35 anos.

Na análise das pescarias nas regiões de "Abrolhos" e do "Mar Novo" entre 1979 e 1985, Paiva e Andrade (1994) apontaram CPUEs de 445 kg/dia de pesca em média, variando de 327 em 1979, a 562 em 1985, com uma tendência significativa de aumento (ANOVA: P= 0,0037). Paiva e Andrade-Tubino (1998^a) analisando dados desta mesma região, no período entre 1979 e 1995, verificaram que a produtividade das pescarias diminuiu de forma significativa (ANOVA: P= 0,0009), principalmente nos 2 últimos anos, passando de cerca de 1,1 kg/anzol-dia no início do período, para 0,6 kg/anzol-dia em 1995. No período entre 1991 e 1995, a frota de linheiros do Estado do Rio de Janeiro foi estimada em 226 barcos. As características físicas desta frota foram descritas por Garcez (2000) com base em 37 registros de embarcações. Deste total, 19 barcos foram classificados como pequenos e possuíam médias de 12 m de comprimento, 110 HP de potência do motor e 22,9 anos; 18 embarcações foram classificadas como grandes e possuíam, em média, comprimento de 17 m, motor com 216 HP e idade de 42,3 anos. Ambas as categorias tinham autonomia de até 15 dias de mar e levavam até 20 e 29 pescadores, respectivamente. Entre 1996 e 1999, as taxas de capturas calculadas para os desembarques no porto de Niterói variaram em torno de 255 kg/dia de pesca, com uma pequena tendência de queda. O número de embarcações baseadas neste porto também diminuiu de 91 em 1996 para 70 em 1999.

Assumindo que os valores de *CPUE* publicados por Paiva e Andrade (1994) e Paiva e Andrade-Tubino (1998^a) para a frota de barcos linheiros em operação ao largo da costa sudeste do Brasil, entre 1979 e 1995, são

proporcionais, pode-se estimar que a *CPUE* média no período de 1990 a 1995 foi de cerca de 380 kg/dia de pesca, chegando a aproximadamente 290 kg/dia de pesca no final do período, valor compatível com a média de 297 kg/dia calculada para o ano de 1996, neste trabalho. Estes números sugerem que desde o pico de produção diária por barco, superior a 550 kg, alcançado em meados da década de 80, a *CPUE* dos barcos de linha-de-fundo vem caindo continuamente, atingindo cerca de 400 kg/dia de pesca no início da década de 90 e 250 kg/dia de pesca no final da mesma. A diminuição da frota de linha-defundo do porto de Niterói, o mais tradicional da região, provavelmente está relacionada à queda dos rendimentos pesqueiros.

Em Santos, no início dos anos 80, operavam duas frotas de espinhel-defundo, que direcionavam suas capturas para os cações e para o cherneverdadeiro, e uma de linha-de-mão. A frota de espinhel-de-fundo para cações era composta por 7 embarcações de 10 a 12 metros de comprimento, com motores de 90 HP, que operavam em profundidades de até 70 m. A frota direcionada para a pesca do cherne-verdadeiro contava com 6 barcos de 14 a 20 metros de comprimento, com motores de 150 a 245 HP, que operavam entre as profundidades de 100 a 120 m. (Santos *et al.*, 1988; Seckendorff, com. pes.^{*}). Os dados de captura e esforço específicos destas frotas pesqueiras não estão disponíveis.

No período de 1996 a 1999, todos os barcos sediados em Santos já utilizavam o espinhel-de-fundo com cabo de aço e guincho hidráulico, possuíam cascos com comprimentos entre 15 e 26 m e motores de 156 a 350 HP (Ávila-da-Silva *et al.*, 2001). O número de embarcações em operação por ano variou entre 6 e 11, e obtiveram rendimentos médios de 436 kg/dia de pesca, sem tendências significativas. As relativas altas taxas de captura observadas em 1998 e 1999, e a característica sazonal de sua variação foi decorrente do direcionamento das capturas para o *Genidens barbus*. Mesmo fora do período da pesca desta espécie, as taxas de captura de peixes demersais registradas em Santos são superiores às de Niterói. Todavia, isto não implica necessariamente que o poder de pesca efetivo destas

^{*} Seckendorff, R.W. von - Centro de Pesquisa do Pescado Marinho, Instituto de Pesca, Santos

⁻ SP

embarcações seja diferente, uma vez que a composição das capturas e a área de pesca não são exatamente as mesmas.

Em Ubatuba, a média de *CPUE* para o período entre 1996 e 1999 foi de 174 kg/dia de pesca. A maior média trimestral de produtividade registrada foi de 463 kg/dia de pesca, no terceiro trimestre de 1999, quando as capturas foram direcionadas para *Genidens barbus*. Praticamente não existem informações sobre a pesca de linha-de-fundo para este município em períodos anteriores. De acordo com observações de campo e registros de desembarques, as embarcações desta frota possuem entre 7,4 e 18,5 m de comprimento, motores de 60 a 240 HP e operam com diversas modalidades de pesca de linha-de-fundo, como linha-de-mão, "boinha", e espinhel-de-fundo. Alguns dos barcos classificados nesta frota são provenientes do Estado do Espírito Santo, o que explica o alto número de desembarques de cruzeiros iniciados em portos capixabas. Estas embarcações ficam temporariamente baseadas em Ubatuba quando operam ao sul do paralelo 24°S.

A área de atuação das embarcações que operam com linha-de-fundo variou de acordo com o porto de desembarque, sendo a área compreendida entre as latitudes 24 e 26°S, a mais explotada. Nos desembarques no porto de Niterói foram reportadas capturas até a faixa de latitude entre 30 e 32°S, correspondente ao norte do Estado do Rio Grande do Sul. Capturas entre 26 e 28°S, ao largo do Estado de Santa Catarina, foram bastante freqüentes e indicaram a expansão da área de pesca dos barcos baseados naquele porto, que operavam tradicionalmente até o paralelo 26. No entanto, a área de maior concentração de esforço destes barcos, entre 22 e 26°S (Lima et al., 1985; Paiva e Andrade-Tubino, 1998^a), continua praticamente a mesma desde a década de 70. No porto de Santos, foram desembarcadas capturas realizadas em toda a costa sudeste e sul do Brasil e, em Ubatuba, apenas capturas realizadas ao largo do Estado de São Paulo. De acordo com os dados de distribuição das espécies vulneráveis à pesca de espinhel-de-fundo na costa sudeste do Brasil (Haimovici et al., 1998), a frota pesqueira já explota toda a área de ocorrência das espécies-alvo na região.

Lopholatilus villarii foi a principal espécie desembarcada nos anos de 1996 a 1999, chegando a representar 50% das capturas da pesca de linha-defundo em 1997. Sua importância para esta pescaria tem sido reportada desde o início da década de 70. Nos anos de 1970 a 1972, seus desembarques representaram 20% do total da pesca de linha no Arquipélago de Abrolhos e no "Mar Novo", ficando apenas atrás de *Pseudopercis* spp. (namorados), que contribuíram com 27% das capturas (Zavala-Camin e Puzzi, 1974). No período de 1970 a 1980, foi a principal espécie desembarcada no Rio de Janeiro. Com uma produção anual média de 808,5 t, representou 24% da produção da pesca de linha-de-fundo (Lima *et al.*, 1985). Paiva e Andrade (1994), analisando os desembarques efetuados nos portos do Rio de Janeiro/Niterói e Vitória entre 1979 e 1985, destacaram a predominância de *Lopholatilus villarii* na composição das capturas, que alcançou a média anual de 857,9 t, ou 23,8% do peso desembarcado. No período de 1986 a 1995, foi estimada uma produção anual média desta espécie de 547 t, representando 33,4% das capturas da pesca de linha-de-fundo desta região (Paiva e Andrade-Tubino, 1998^b).

Embora continue sendo uma espécie importante para a pesca, as capturas médias anuais de *Lopholatilus villarii*, caíram de cerca de 800 t entre os anos de 1970 e 1985, para 547 t no período de 1986 a 1995. A tendência de queda continuou sendo observada entre 1996 e 1999, quando seus desembarques pela frota de linha-de-fundo no Rio de Janeiro foram de apenas 266,7 t. Somando-se os desembarques de Santos e Ubatuba, sua produção não atingiu 400 t no ano de 1999.

A análise dos fatores que influenciaram a *CPUE* de *Lopholatilus villarii* com linha-de-fundo, entre 1996 e 1999, apontou que as principais fontes de variação foram a frota pesqueira e a posição geográfica. As embarcações baseadas em Ubatuba apresentaram rendimentos significativamente mais baixos, provavelmente decorrentes de seu menor porte e da utilização de aparelhos de pesca com características mais artesanais. As taxas de captura tenderam a crescer em direção sul, como já verificado na análise dos dados dos cruzeiros de pesquisa. Embora a *CPUE* tenha variado entre os anos, esta variação não se deu de forma sistemática. Os resultados obtidos reforçam a necessidade da padronização dos dados de *CPUE* para que reflitam a abundância relativa do estoque, independente das variações do poder de pesca das embarcações ou da capturabilidade em diferentes áreas ou épocas do ano.

De acordo com o modelo ajustado, a *CPUE* padronizada de *Lopholatilus villarii* variou de 169 a 113 quilogramas por dia de pesca entre 1996 e 1999, sem apresentar tendências significativas. Paiva e Andrade (1994) verificaram que a *CPUE* do *Lopholatilus villarii* nas áreas de pesca de Abrolhos e do "Mar Novo", entre 1979 e 1985, variou de 77 (em 1980) a 132 (em 1985), com média de 104 kg/dia de pesca, também sem tendência definida.

Para a área do "Mar Novo" nos anos de 1974 a 1980, considerando os valores de 15 a 20 pescadores por dia-barco (Lima *et al.*, 1985), pôde-se estimar uma *CPUE* média de cerca de 170 kg/dia, com tendência de aumento no período. Mesmo levando em conta que os valores de *CPUE* apresentados por outros autores não foram padronizados e foram calculados em diferentes unidades, e por isto dificilmente comparáveis de forma direta, pode-se inferir que, pelo menos em ordem de grandeza, não houve variações importantes nas taxas de captura de *Lopholatilus villarii*.

Muito provavelmente para este tipo de pesca, na qual as espécies-alvo, como o *Lopholatilus villarii*, têm distribuição agregada e ambientes preferenciais facilmente localizados pelos pescadores, o que facilita o direcionamento das capturas, a *CPUE* não seja o melhor indicador da variação da abundância dos estoques. Mesmo considerando o alto valor comercial das espécies capturadas, observa-se a queda contínua da produção e do esforço pesqueiro depois de 1985, quando foi registrada a maior produção desembarcada.

Os resultados sugerem que as embarcações são retiradas da pesca assim que seu rendimento deixa de ser favorável, o que impede que a *CPUE* caia de forma sistemática. Os custos com a armação da embarcação para operar em áreas de pesca longe de seus portos de origem e mais afastadas da costa, conjugada à facilidade permitida por lei para a mudança do aparelho de pesca, provavelmente determinam esta dinâmica. Este fenômeno é chamado pelos pescadores de "defeso natural", em referência aos períodos de proibição à pesca. Para eles, quando a pesca atinge baixas taxas de captura passa a ser naturalmente proibitiva.

Para espécies de alta longevidade e de maturação tardia, a manutenção da estrutura etária e da proporção sexual original do estoque também é necessária para evitar seu colapso.

6.3 DINÂMICA DE POPULAÇÃO, ANÁLISE DE POPULAÇÃO VIRTUAL E REDIMENTO DA PESCARIA DE *Lopholatilus villarii*

Lopholatilus villarii tem sido a espécie mais capturada pelas frotas de linha-de-fundo na costa sudeste do Brasil nas últimas três décadas. Assim como *Lopholatilus chamaeleonticeps*, espécie congenérica que ocorre no Atlântico Norte, possui um ciclo de vida complexo e uma estrutura populacional delicada, o que o faz extremamente suscetível à sobrepesca (Grimes e Turner, 1999).

As amostras obtidas nos cruzeiros de pesquisa e junto à frota pesqueira de Santos entre os anos de 1995 e 1999, indicaram um tamanho médio de captura de 554,7 mm, sendo o comprimento furcal máximo observado de 1153 mm, equivalente a 1213 mm de comprimento total (Lt). No entanto, foi detectada uma tendência significativa de queda dos valores médios e medianos no período que chegaram a 554,6 e 526,0 mm, respectivamente, em 1995 e 1999. Como não houve mudança nos aparelhos de pesca e na área de captura, supõe-se que a diminuição do tamanho dos peixes deve-se à remoção dos indivíduos maiores do estoque e não a alguma mudança na seletividade dos anzóis. Com comprimentos furcais médios de primeira maturação gonadal para fêmeas e machos estimados em 336,5 e 426,4 mm, respectivamente, e com o número de machos tendendo a ser proporcionalmente igual ou superior ao de fêmeas em comprimentos maiores que 420 mm, pode-se deduzir que os machos adultos formam a maior parte das capturas.

Grimes e Turner (1999) analisando os resultados de diversos trabalhos sobre a biologia e pesca de *Lopholatilus chamaeleonticeps* na costa leste americana, sugeriram que a retirada seletiva dos machos de maior porte e, provavelmente dominantes, pode causar uma desorganização no sistema de acasalamento e prejudicar o sucesso reprodutivo das fêmeas maduras, pois os machos menores remanescentes, com testículos menores, podem não ser capazes de fertilizar todos os ovócitos produzidos pelas fêmeas.

Estima-se que *Lopholatilus chamaeleonticeps* atinja o comprimento médio de primeira maturação gonadal entre 5 e 7 anos de idade, com tamanhos que variam de 45 a 65 cm (Steimle *et al.*, 1999). Erickson e Grossman (1986) estimaram que 50% das fêmeas estão maduras com um comprimento total de

50 cm e 6 anos, e os machos com 45 cm e 5 anos. A predominância do número relativo de fêmeas em comprimentos menores e de machos em tamanhos maiores levou estes autores a levantarem a hipótese da ocorrência de hermafroditismo protogínico. Grimes *et al.* (1988) determinaram que o comprimento furcal médio de primeira maturação gonadal para ambos os sexos está entre 48 e 61 cm. As estimativas feitas a partir dos métodos visual e histológico diferiram principalmente para os machos. Foi observado que, embora os machos menores fossem fisiologicamente maduros, estes só desenvolviam uma massa testicular facilmente visível quando se tornavam machos dominantes. A hipótese do hermafroditismo protogínico para esta espécie ainda não foi confirmada (Steimle *et al.*, 1999).

Para *Lopholatilus villarii* os comprimentos furcais médios de primeira maturação gonadal, estimados em 336,5 mm para as fêmeas e em 426,4 mm para os machos, correspondem aproximadamente às idades de 6 a 7 anos e de 7 a 8 anos, respectivamente. Estes resultados sugerem que as duas espécies do gênero *Lopholatilus* têm um padrão reprodutivo semelhante, inclusive na proporcionalidade de machos e fêmeas por classe de comprimento. Macroscopicamente não foram observados indícios de hermafroditismo, entretanto, futuras análises histológicas de gônadas de indivíduos mais novos e, principalmente do sexo masculino, poderão caracterizar de forma mais detalhada o ciclo reprodutivo da espécie.

O presente estudo demonstrou que os machos crescem mais rapidamente que as fêmeas e atingem os maiores tamanhos. As análises de incremento marginal e do tipo de borda dos otólitos sugeriram que os anéis opacos são formados anualmente no final da primavera e início do verão, período equivalente ao final da época de maior atividade reprodutiva.

Os resultados obtidos através do ajuste da curva de von Bertalanffy sobre os dados de comprimento-na-idade retrocalculados, considerando a sua estrutura de correlação, levaram a estimativa dos valores dos comprimentos furcais assintóticos (Lf_{∞}) de machos e de fêmeas de 1452 e 1210 mm (equivalentes a 1510 e 1257 mm Lt), e os coeficientes de crescimento de 0,044 e 0,038 ano⁻¹, respectivamente. A idade máxima observada nas fêmeas amostradas foi de 23 anos e nos machos de 35 anos e, de acordo com as estimativas de mortalidade total, é esperada uma longevidade de cerca de 40 anos.

O método de ajuste dos parâmetros da curva de crescimento de von Bertalanffy que assumiu a correlação entre os comprimentos retrocalculados de cada espécime foi o mais robusto, apresentando para a maioria das estimativas os intervalos de confiança mais estreitos, guardando a tendência dos machos alcançarem os maiores tamanhos e estimando valores de comprimento furcal assintótico condizentes com os observados nas capturas, onde o maior exemplar capturado, provavelmente um macho, mediu 1153 mm.

O modelo ajustado aos dados de comprimento médio retrocalculado por idade, que assumiu uma falsa independência entre os pontos, forneceu os menores intervalos de confiança para as estimativas do comprimento assintótico dos machos e dos sexos agrupados. Este método foi sensível à pouca curvatura apresentada pelos dados de comprimento-na-idade retrocalculados para as fêmeas e, como efeito, apresentou intervalos de confiança comparativamente maiores que o método anterior e uma estimativa de comprimento assintótico para as fêmeas superior à dos machos, o que destoa do padrão biológico observado.

O fato de não terem sido coletados otólitos de espécimes com idades inferiores a cinco anos e o padrão de crescimento da espécie, praticamente linear até cerca de 20 anos, prejudicaram a utilização dos dados de comprimento furcal observado na idade de captura. As tentativas de obtenção de estimativas baseadas unicamente nestes dados resultaram na não convergência das iterações para os parâmetros da curva de crescimento das fêmeas. Mesmo com a utilização dos comprimentos retrocalculados para as idades 1 a 5, este método forneceu os maiores intervalos de confiança para todos os parâmetros nas diversas categorias de sexo. Especialmente para as fêmeas, as estimativas dos parâmetros de comprimento assintótico e de curvatura foram de significado biológico questionável. Os amplos intervalos de confiança das estimativas, que incluíram até valores negativos, e os valores *P*, maiores que 0,05, indicaram que os resultados desta regressão não são válidos.

Outros estudos realizados sobre a distribuição e crescimento de Lopholatilus villarii ao largo da costa brasileira também apontam para sua alta longevidade e crescimento diferenciados entre os sexos. Alencar *et al.* (1998) registraram a captura de *Lopholatilus villarii* com espinhel-de-fundo no nordeste brasileiro até a costa do Ceará. Este estoque, até então desconhecido, apresentou capturas de indivíduos machos de até 1071 mm de comprimento furcal e de fêmeas de até 895 mm, com médias de 965,8 e 782,2 mm. A diferença entre os comprimentos médios de captura reportados por Alencar *et al.* (1998) para um estoque virgem e os apresentados neste estudo, deve-se provavelmente, em grande parte, à mortalidade por pesca sofrida pelo estoque da região sudeste.

Carvalho *et al.* (1998) estudando o crescimento de *Lopholatilus villarii* para sexos agrupados, registram peixes com comprimento total entre 326 e 900 mm nos desembarques da frota de linha-de-fundo no porto de Niterói. Os anéis etários, lidos em escamas, foram validados como anuais, com formação entre o terceiro e quarto trimestres. O comprimento total assintótico foi estimado em 1134 mm, o coeficiente de crescimento em 0,114 ano⁻¹ e a longevidade em 41 anos. No entanto, estas estimativas são passíveis de questionamento uma vez que foram lidas escamas com um número máximo de apenas 10 anéis e, ainda, que a estrutura utilizada não é recomendada para estudos de crescimento em espécies de vida longa.

Leite-Jr. (1999) em amostras de *Lopholatilus villarii* obtidas em desembarques da frota de linha-de-fundo em Rio Grande, Rio Grande do Sul, e nas operações de pesca do B/P *Margus II* realizadas entre as latitudes 28° e 34°S, registrou espécimes machos de até 1054 mm e fêmeas de 935 mm de comprimento total. Nos otólitos foram contados, respectivamente, um número máximo de 32 e 38 anéis etários, formados anualmente nos meses de primavera. No estudo de Leite-Jr. (1999) as curvas de crescimento de machos e fêmeas também diferiram de forma significativa. Para os machos, as estimativas dos parâmetros da curva de von Bertalanffy (L_{∞} , K e t₀) foram de 911 mm Lt, 0,091 ano⁻¹ e -1,383 ano, e para as fêmeas de 1051 mm, 0,094 ano⁻¹ e 0,661 ano.

O número relativamente grande de classes etárias por classe de comprimento, como indicado na chave comprimento-idade (Tabela 48), é decorrente das baixas taxas de crescimento observadas principalmente nos indivíduos mais velhos. Outra possível causa para esta grande variabilidade de

idades por classe de comprimento é que os métodos empregados para o estudo do crescimento agrupam as informações de diferentes coortes, assumindo desta forma um sistema de parâmetros constantes. No entanto, devido à alta longevidade e às variações das condições ambientais e de pressão pesqueira é possível que coortes separadas no tempo, por anos ou décadas, possam ter parâmetros distintos, o que resultaria na observação de diferentes comprimentos médios por classe etária em uma determinada idade. Turner (1986) e Leite-Jr. (1999) apresentaram chaves de comprimento-idade para *Lopholatilus chamaeleonticeps* e *L. villarii* em que algumas classes de comprimento de 5 cm de amplitude chegam a comportar mais que 10 classes etárias.

A taxa de mortalidade total instantânea, calculada para os diferentes anos através do método de curva de captura linearizada baseada em comprimentos, pressupõe exatamente este sistema constante de parâmetros e, na prática, trabalha com pseudo-coortes (Sparre e Venema, 1998). Dos pressupostos listados por Pauly (1983), apenas o de que a amostra de comprimentos utilizada é suficientemente grande para representar a estrutura média da população no período analisado pode ser considerado atendido. Os pressupostos de taxa de mortalidade total (Z) e recrutamento constantes para todas as classes etárias parecem ser difíceis de serem atendidos em uma espécie de alta longevidade, como demonstrou a análise de população virtual do Lopholatilus villarii. Ainda com as ressalvas expostas, as estimativas obtidas apontam para uma tendência geral do ciclo de vida e da pescaria da espécie. Taxas de sobrevivência de cerca de 80% ao ano são condizentes com idades máximas de 30 anos ou mais (Figuras 99 a 104) e a remoção dos indivíduos maiores da população, indicada pela observação da distribuição anual de comprimentos (Figuras 59 e 60) e pela variação significativa das médias e medianas, resultaram na tendência de aumento das taxas de mortalidade no período estudado (Tabela 49).

Estes valores de mortalidade total também podem indicar quais dos valores de mortalidade natural (*M*), estimados pelos métodos empíricos, é mais razoável. Taxas de mortalidade natural de superiores a 0,2 ano⁻¹ não são compatíveis com as estimativas de taxa de mortalidade total calculadas e não são condizentes com as idades observadas de até 35 anos. Considerando

apenas a mortalidade natural, uma taxa de 0,2 ano⁻¹ permitira a sobrevivência de apenas 0,25% de uma classe etária após 30 anos de vida ($e^{-0,2\times30}=0,25\%$). A hipótese de que a taxa de mortalidade média seja próxima a 0,11 ano⁻¹ é mais consistente, visto que poderia suportar uma longevidade de mais que 40 anos ($e^{-0,11\times40}=1,23\%$).

Diversos trabalhos listados por Pauly (1980), para peixes de vida longa, indicam taxas de mortalidade natural inferiores a 0,2 ano⁻¹. Estimativas da taxa de mortalidade natural realizadas para *Lopholatilus chamaeleonticeps*, ao largo da costa leste americana apontaram para valores entre 0,25 e 0,10 ano⁻¹, sendo que aqueles próximos a 0,15 ano⁻¹ são tidos como mais realistas (Harris e Grossam, 1985; Turner, 1986; Hightower e Grossman, 1989). Para *Epinephelus niveatus*, espécie que apresenta alta longevidade e ocorre no Atlântico associado a *Lopholatilus villarii* e a *L. chamaeleonticeps*, as estimativas de *M* também giram em torno de 0,15 ano⁻¹ (Huntsman *et al.*, 1983; Matheson e Huntsman, 1984).

A análise de população virtual (VPA) baseada em dados de captura-naidade foi utilizada principalmente avaliar o impacto da pescaria sobre as diferentes classes etárias. Esta análise mostrou que no período de 1995 a 1996 houve uma diminuição no estoque de cerca de 37%, passando de 1,9 milhões de indivíduos no início de 1995 para 1,2 milhões em no início de 1999. A variação da biomassa média foi de aproximadamente 49%, caindo de 3.382 t em 1995 para 1.714 t em 1999. A maior perda relativa da biomassa decorreu do fato de que os indivíduos mais capturados foram de médio e grande porte. As maiores diminuições em números de indivíduos ocorreram entre as idades 8 e 16 anos e as maiores taxas de mortalidade por pesca incidiram sobre os peixes mais velhos, que são provavelmente os machos dominantes. As capturas em peso de peixes de até 18 anos também são expressivas. Observase ainda, que o número de indivíduos capturados em 1995 foi praticamente o dobro do número recrutado e que nos demais anos foram capturados um número equivalente ao recrutado (Tabelas 56 a 62 e Figuras 105 a 109).

Variações no volume de desembarque reportados, decorrentes de inexatidões dos dados de captura, poderiam influenciar os valores absolutos de número de indivíduos e de biomassa por classe etária, mas o padrão da pescaria permaneceria praticamente o mesmo. Outra possível fonte de erro

poderia ser a estimativa da mortalidade por pesca nos grupos etários mais velhos (*F* terminal). No entanto, no caso dos peixes de vida longa, em que a mortalidade por pesca, alta em relação à mortalidade natural, é a principal causa da morte, diferentes valores de *F* terminal têm progressivamente menor efeito sobre as estimativas dos grupos etários mais novos e mais capturados (Gulland, 1983; Christensen, 1996).

Na análise de população virtual assumiu-se que a composição de comprimentos dos desembarques de *Lopholatilus villarii* em Niterói e em Ubatuba é semelhante à de Santos, visto que há uma grande sobreposição nas áreas de captura e o poder de captura das embarcações baseadas em Niterói e Santos ter sido equivalente. No entanto, se considerarmos que estas frotas guardam aspectos mais tradicionais e realizam suas capturas em áreas de menor profundidade, pode-se supor que a captura relativa de indivíduos menores tenha sido mais expressiva. Neste caso, seria necessária uma maior remoção de peixes do estoque e, como conseqüência, as estimativas das taxas de mortalidade por pesca seriam ainda mais altas.

A análise de rendimento-por-recruta de Beverton e Holt permitiu o exame do balanço entre a captura de um grande número de peixes mais jovens, menores, e a captura de um menor número de peixes de maior porte e mais velhos. O modelo assume uma estrutura populacional em estado de equilíbrio e, desta forma, utiliza pseudocoortes (King, 1995). As premissas do método são de recrutamento constante, de que todos os peixes de uma mesma coorte eclodam em uma mesma data e que também sejam recrutados à área de pesca em um mesmo momento, de que as mortalidades por pesca e natural sejam constantes a partir do momento da entrada na fase de explotação, de distribuição homogênea do estoque e, finalmente, de que a relação peso~comprimento possui expoente 3 (Sparre e Venema, 1998). No entanto, estas premissas, difíceis de serem observadas em um estoque de peixes, podem ser relaxadas quando a análise é utilizada para a avaliação do efeito da variação da idade de primeira captura e do padrão de explotação, visando a orientação de medidas de manejo (Jennings *et al.*, 2001).

A aplicação do modelo de rendimento-por-recruta aos dados de pesca de *Lopholatilus villarii* analisados indicou que a mortalidade por pesca média de 0,35 ano⁻¹, calculada para as idades de 5 a 23 anos, ou de 0,47 ano⁻¹, para os

peixes totalmente recrutados, com idades superiores a 10 anos, é bem maior do que a capacidade de suporte do estoque, levando a relação entre a biomassa por recruta e a biomassa virgem para níveis inferiores a 6%.

Os valores de F_{max} , que indica o F que resulta na captura-por-recruta máxima possível para um determinado padrão de pesca, e o $F_{0,1}$, que aponta a taxa de mortalidade por pesca onde a inclinação da curva de rendimento-porrecruta atinge 10% de seu valor inicial, são utilizados para avaliar o nível de explotação de diversos estoques e como pontos de referência biológica para o manejo das pescarias. O F_{max} tem sido proposto como um ponto-limite de referência biológica enquanto que o $F_{0,1}$ é normalmente utilizado como pontoalvo de referência. O rendimento-por-recruta obtido com o $F_{0,1}$ não ofereve a maior captura possível, mas dá garantias de se manter uma reprodução aceitável (Caddy, 1998; Cadima, 2000).

Os valores de $F_{0,1}$ e F_{max} estimados mostraram que a taxa anual de mortalidade por pesca deveria ser preferencialmente de 0,06 ano⁻¹ e não deveria exceder 0,10 ano⁻¹ (Tabela 63 e Figura 110). Mesmo em condições otimistas, com maiores taxas de mortalidade natural e idades de primeira captura, o atual nível de esforço mostra-se demasiado (Tabelas 64 e 65 e Figuras 111 e 112).

Outro método de análise utilizado para a avaliação da pesca de *Lopholatilus villarii* foi o de Thompson e Bell. Este é a contraparte preditiva da análise de população virtual (VPA). A partir da lista de taxas de mortalidade por pesca por classe etária e do número de recrutas por ano, ambos fornecidos pelo VPA, e do pressuposto de um sistema de parâmetros constantes, o modelo estima o efeito da variação percentual do nível de esforço sobre o rendimento pesqueiro (Sparre e Venema, 1998).

Os resultados da aplicação do modelo de Thompson e Bell sobre os resultados da análise de VPA também indicaram que o atual nível de esforço está além da capacidade de suporte do estoque. O nível de esforço necessário para prevenir a sobre-pesca do estoque seria de apenas 10% do atual e não deveria ser maior que 40%.

Mesmo considerando possíveis erros de estimativas devido à não observação de muitos dos pressupostos dos métodos utilizados, especialmente de que os padrões de seletividade e de recrutamento são constantes, as diversas análises realizadas mostram que o estoque analisado é alvo de uma taxa de mortalidade por pesca muito acima de seu poder de reposição e, por conseguinte, encontra-se em estado de sobre-explotação. Embora grande parte das capturas seja de peixes adultos, o número de indivíduos removidos da população é grande em relação às estimativas de recrutamento, que teve tendência decrescente no período.

7 CONCLUSÕES

Lopholatilus villarii é um peixe demersal de ampla distribuição entre os paralelos 22° e 28°S. Ocorre principalmente na região de quebra de plataforma externa e talude superior interno (200 a 400 m) e aparentemente tem comportamento sedentário. Devido à sua ampla distribuição, sua captura principalmente encontra-se associada às de Epinephelus niveatus. Pseudopercis numida, Polyprion americanus e Urophycis cirrata, espécies de distribuição mais restrita. A composição das assembléias de peixes vulneráveis aos métodos de pesca com linha-de-fundo e, conseqüentemente, as associações observadas com o Lopholatilus villarii, variam principalmente ao longo de um gradiente de profundidade, havendo secundariamente um gradiente latitudinal. Estas variáveis ambientais parecem refletir o efeito das diferentes massas de água e tipos de fundo sobre a distribuição das espécies. A identificação das assembléias e dos fatores que determinam sua distribuição contribui para delinear os contextos ambientais e biológicos da explotação de determinadas espécies alvo, principalmente quando são utilizados métodos de avaliação de estoques mono-específicos.

As assembléias de peixes determinadas são explotadas principalmente por embarcações de linha-de-fundo baseadas nos portos de Niterói, Estado do Rio de Janeiro, Ubatuba e Santos (São Paulo). As principais espécies desembarcadas nestes portos, entre 1996 e 1999, foram Lopholatilus villarii, Pseudopercis numida, Epinephelus niveatus e Genidens barbus. Embora as áreas de pesca destas frotas tenham ampla sobreposição, o direcionamento de suas pescarias e seu poder de pesca apresentaram características próprias que devem ser consideradas. Especificamente para Lopholatilus villarii, observou-se que as embarcações baseadas nos portos de Niterói e Santos possuem um poder de pesca superior às de Ubatuba. Outro importante fator que condiciona o rendimento da pescaria é a faixa de latitude, sendo a porção mais meridional da área de estudo mais piscosa. A CPUE variou entre os anos, mas não de forma sistemática, sugerindo que a abundância deste recurso pesqueiro não apresentou tendências significativas. No entanto, considerando o curto período observado e a alta vulnerabilidade e longevidade da espécie, concluiu-se que, embora o estudo da CPUE e dos fatores que influenciam sua variação seja uma etapa necessária para a compreensão da dinâmica da pescaria, o impacto da atividade pesqueira sobre o estoque é mais bem definido por métodos que levem em conta sua estrutura populacional.

A análise da dinâmica populacional do *Lopholatilus villarii* mostrou que, na área de estudo, esta espécie tem uma longevidade estimada em 40 anos, com crescimento diferenciado entre os sexos. As estimativas de comprimento furcal assintótico (Lf_{∞}) foram de 1452 mm para machos e 1210 mm para fêmeas, com taxas de crescimento de 0,044 e 0,038, respectivamente. O estudo de seu ciclo reprodutivo indicou que os comprimentos furcais médios de primeira maturação gonadal para machos e fêmeas é de 426 e 336 mm, respectivamente, com uma maior atividade reprodutiva nos meses de setembro a dezembro. A análise da estrutura de comprimentos desembarcada mostrou uma tendência de diminuição da média de captura que, variou de 638 para 555 mm entre 1994 e 1999. Mesmo com esta variação, tem-se que a pescaria foi voltada basicamente para indivíduos adultos.

Embora este padrão de captura possa parecer adequado, a análise de população virtual e a aplicação dos modelos de rendimento-recruta de Beverton e Holt e preditivo de Thompson e Bell indicaram que o estoque encontra-se em estado de sobrepesca, sendo alvo de taxas anuais de mortalidade por pesca muito superiores à sua capacidade de suporte. Entre 1995 e 1999 o número de indivíduos capturados excedeu o número estimado de recrutas e o estoque foi reduzido em cerca de 37%. As análises indicaram que a taxa de mortalidade por pesca deveria ser preferencialmente de 0,06 ano⁻¹, não ultrapassando o limite de 0,10 ano⁻¹. Entretanto, a média de mortalidade por pesca estimada para as idades de 5 a 23 anos foi de 0,35 ano⁻¹, chegando a 0,47 ano⁻¹, para idades acima de 10 anos.

Considerando que o desenvolvimento de pescarias na margem continental do Brasil é uma tendência irreversível e que a manutenção dos estoques pesqueiros em níveis que proporcionem bons rendimentos é de interesse nacional, torna-se imprescindível a elaboração de políticas públicas que assegurem que a atividade pesqueira seja norteada pelos princípios expostos no Código de Conduta para a Pesca Responsável, proposto pela Organização das Nações Unidas para a Agricultura e Alimentação (www.fao.org). Este Código enfatiza que o direito da pesca carrega consigo a obrigação em fazê-la de forma responsável, garantindo a conservação efetiva e o manejo dos recursos vivos aquáticos e de seus ecossistemas.

Como demonstrado, mesmo as pescarias mais seletivas, como a de espinhel-de-fundo, explotam não apenas um estoque, mas sim uma comunidade, cujas relações ainda são pouco conhecidas. Espécies integrantes destas comunidades, como *Lopholatilus villarii*, possuem um ciclo de vida longo, complexo e são altamente vulneráveis à atividade pesqueira.

De acordo com os resultados obtidos, conclui-se que a pesca de linha-defundo sobre o estoque de *Lopholatilus villarii*, e possivelmente sobre os estoques das outras espécies-alvo, tem sido conduzida com um nível de esforço muito acima dos limites indicados para assegurar a sustentabilidade das capturas. A aplicação de medidas de manejo que visem a manutenção da estrutura populacional da espécie e a proteção de seu ecossistema é urgente e necessária para que o estoque seja recuperado e o rendimento, e a própria atividade pesqueira, preservados.

8 **BIBLIOGRAFIA**

- Alencar, C.A.G., R. Salles, C.A.S. Rocha e M.O. Ximenes-Carvalho, 1998. Caracterização biométrica do Batata, *Lopholatilus villarii* Ribeiro, 1915 (Teleostei:Malacanthidae), no Nordeste do Brasil. *Arq. Ciên. Mar.*, Fortaleza, *31*(1):101-106
- Able, K.W., C.B. Grimes, R.A. Cooper e J.R. Uzmann 1982. Burrow construction and behavior of tilefish, *Lopholatilus chamaeleonticeps* in Hudson Submarine Canyon. *Environ. Biol. Fish.*, **7**(3):199-203
- Aidar, E., S.A. Gaeta, S.M.F. Gianesella-Galvão, M.B.B. Kutner e C. Teixeira 1993. Ecossistema costeiro subtropical: nutrientes dissolvidos, fitoplâncton e clorofila-a e suas relações com as condições oceanográficas na região de Ubatuba, SP. *Publção esp. Inst. Oceanogr.*, São Paulo, (10):9-43
- Alves, E.C. e V.R.A. Ponzi 1984. Características morfológico-sedimentares da plataforma continental e talude superior da margem continental sudeste do Brasil. In: Anais do XXXIII Congresso Brasileiro de Geologia, Rio de Janeiro. p.1629-1642
- Ávila-da-Silva, A.O. e C.C. Ataliba 2000. A pesca do bagre-branco (*Netuma barba*) pela frota de espinhel de fundo do Estado de São Paulo. **In**: XIII Semana Nacional de Oceanografia, 29 de out. a 03 de nov. Itajaí, SC, 2000. *Anais da ...*, Universidade do Vale do Itajaí, CTTMar. p.679-681.
- Ávila-da-Silva, A.O. e G.C.C. BASTOS 1999. Analysis of bottom longline catch and effort data, and length composition variation of *Lopholatilus villarii* off southeastern Brazil. In: SYMPOSIUM ON ECOSYSTEM EFFECTS OF FISHING, 15-19 mar. Montpellier, França, 1999. *Book of Abstracts*. International Council for the Exploration of the Sea (ICES), Scientific Commitee on Oceanic Research (SCOR) & Institut de Recherche pour le Développement (IRD). p.39
- Ávila-da-Silva, A.O., G.C.C. Bastos e S.L.S. Tutui 2001. A atividade pesqueira do Estado de São Paulo: análise das capturas de espinhel-de-fundo do biênio 98-99. *Bol. Inst. Pesca,* São Paulo,
- Ávila-da-Silva, A.O., M.H. Carneiro e L. Fagundes 1999. Sistema gerenciador de banco de dados de controle estatístico de produção pesqueira marítima- PROPESQ. In: Anais do XI CONBEP E I CONLAEP, 17-21 out., Recife, PE, 1999. Associação dos Engenheiros de Pesca de Pernambuco & Federação das Associações dos Engenheiros de Pesca do Brasil. 824-832
- Ávila-da-Silva, A.O. e M. Haimovici 2001. Demersal fish assemblage structure and diversity of Southeastern and Southern Brazilian continental outer shelf and upper slope. In: *Abstracts of Deep-Sea Fisheries Symposium*, Varadero, 12-14 set., 2001. p.44

- Ávila-da-Silva, A.O. e A.M. Vaz-dos-Santos 2000. Análise das capturas de atuns e afins pelos métodos de vara e isca viva e corrico realizadas pelo N/Pq Malacostraca de 1980 a 1991. *Bol. Inst. Pesca*, São Paulo, **26**(2): 211-221
- Azevedo, P. 1945. Anuário da Pesca Marítima no Estado de São Paulo. Departamento da Produção Animal, Divisão de Proteção e Produção de Peixes e Animais Silvestres. Secretaria da Agricultura, Indústria e Comércio, São Paulo. 122p.
- Badenhorst, A. 1988. Aspects of the South African longline fishery for kingklip *Genypterus capensis* and the capehakes *Merluccius capensis* and *M. paradoxus*. *S. Afr. J. mar. Sci.*, **6**:33-42
- Barcellos, L., M.B. Peres, R. Wahrlich e M. Barison 1991. *Otimização bioeconômica dos recursos pesqueiros marinhos do Rio Grande do Sul.* Editora FURG, Rio Grande, 59p.
- Beckman, D.W. e C.A. Wilson 1995. Seasonal timing of opaque zone formation in fish otoliths. In: Secor, Dean e Campana (eds.), *Recent Developments in Fish Otolith Research*. University of South Carolina Press, Columbia: 27-43
- Bianchi, G. 1991. Demersal assemblages of the continental shelf and slope edge between the Gulf of Tehuantepec (Mexico) and the Gulf of Papagayo (Costa Rica). *Mar. Ecol. Prog. Series*, **73**:121-140
- Bianchi, G. 1992. Study of the demersal assemblages of the continental shelf and upper upper slope off Congo and Gabon, based on the trawl surveys of the RV 'Dr Fridtjot Nansen'. *Mar. Ecol. Prog. Series*, 85:9-23
- Biseau, A. 1998. Definition of a directed fishing effort in a mixed-species trawl fishery, and its impacts on stock assessments. *Aquat. Living Resour.* **11**(3):119-136
- Bjordal, Å. e S. Løkkeborg 1996. *Longlining*. Fishing News Books. Blackwell Science Ltd, Oxford. 156p.
- Bueno, E. 1998. *Capitães do Brasil, a saga dos primeiros colonizadores.* Coleção Terra Brasilis, volume III. Objetiva, Rio de Janeiro. 287p.
- Butterworth, D.S., A.E. Punt, D.L. Borchers, J.B. Pugh e G.S. Hughes 1989. *A* manual of mathematical techniques for linefish assessment. South African National Scientific Programmes 160. 89p.
- Cadima, E.L. 2000. Manual de avaliação de recursos pesqueiros. FAO Fish. Tech. Pap., **393**:162p.
- Caddy, J.F. e G.D. Sharp 1986. An ecological framework for marine fisheries investigations. *FAO Fish. Tech. Pap.*, **283**:152p.

- Capítoli, R.R. e M. Haimovici 1993. Alimentación del besugo *Pagrus pagrus* em el extremo sur Del Brasil. *Frente Marit.*, **14**:81-86
- Carneiro, M.H., L. Fagundes, A.O. Ávila-da-Silva e M.R. Souza 2000. Ambientes marinhos explorados pelas frotas pesqueiras de Santos e Guarujá (SP). In: Anais do V Simpósio Brasileiro de Ecossistemas, Vitória, 10-15 out., 2000. Publ. ACIESP 109(1):83-91
- Carvalho, M.O.X., R.A. Tubino, M.P. Paiva, M.F. Andrade-Tubino e A.A. Fonteles-Filho 1998. Idade e crescimento de *Lopholatilus villarii* Ribeiro no sudeste do Brasil (Osteichthyes, Malacantidae). Revta brás. Zool., 15(4):889-906
- Castello, J.P., M. Haimovici, C. Odebrecht e C.M. Vooren 1997. Relationships and Function of Coastal and Marine Environments: The Continental Shelf and Slope. IN: U. Seeliger, C. Odebrecht e J.P. Castello (Eds.) Subtropical Convergence Environments: The Coast and Sea in the Southwestern Atlantic. Springer-Verlag, New York. 171-175
- Castro, B.M. e L.B. Miranda 1998. Physical oceanography of the western Atlantic Continetal Shelf located between 4°N and 34°S. **In**: *The Sea*. Robinson, A.R. e Brink, K.H. John Wiley & Sons, Inc.: 209-251
- Cerrato, R.M. 1990. Interpretable statistical tests for growth comparisons using parameters in the von Bertalanffy equation. *Can. J. Aquat. Sci.*, **47**:1416-1426
- Christensen, V. 1996. Virtual population reality. Rev. Fish Biol. Fish., 6:243-247
- Coleman, F.C., C.C. Koening, G.R. Huntsman, J.A. Musick, A.M. Eklund, J.C. McGoven, R.W. Chapman, G.R. Sedberry e C.B. Gimes 2000. Long-lived reef fishes: The Grouper-Snapper Complex. *Fisheries*, **25**(3): 14-20
- Dayton, P.K., S.F. Thrush, M.T. Agardy e R.J. Hofman 1995. Environmental effects of marine fishing. *Aquat. Conserv.: Mar. Freshwat. Ecosyst.*, **5**: 205-232
- Diegues, A.C.S. 1983. *Pescadores, Camponeses e Trabalhadores do Mar*. Ensaios 94. Ática, São Paulo. 287p.
- Dufrene, M. e P. Legendre 1997. Species assemblage and indicator species: the need for flexible asymmetrical approach. *Ecol. Monogr.*, **67**(3):345-366
- Erzini, K., J.M.S. Gonçalves, L. Bentes e P.G. Lino 1995. *Small hook longline selectivity study – Final Report.* Commission of the European Communities DG XIV/C/1, Universidade do Algarve, Portugal. 112p.
- Facchini, B.H. 1995. Ecologia de associações de peixes teleósteos demersais da plataforma continental sudeste do Brasil. São Paulo. 228p. (Tese de Doutorado em Ciências. Instituto Oceanográfico da Universidade de São Paulo)

- Faraway, J.J. 2000. Practical Regression and Anova using R. Disponível para download em www.r-project.org. 202p.
- Figueiredo, J.L. 1981. *Estudo das distribuições endêmicas de peixes da Província Zoogeográfica Marinha Argentina*. 121p. (Tese de doutorado. Instituto de Biociências da Universidade de São Paulo)
- Figueiredo, A.G. e L.S.P. Madureira (Coord.) 1999. Relatório Final dos Dados Geológicos. Programa de Avaliação do Potencial Sustentável dos Recursos Vivos da Zona Econômica Exclusiva, Subcomitê Sul, REVIZEE -Score Sul. 58p.
- Francis, R.I.C.C. 1990. Back-calculation of fish length: a critical review. *J. Fish. Biol.*, **36**:883-902
- Freeman, B.L. e S.C. Turner 1977. Biological and fisheries data on tilefish, Lopholatilus chamaeleonticeps Goode and Bean. Tech. Ser. Rep. NOAA/NMFS 5. 47p.
- Gaeta, S.A. 1999. *Produção Primária na Região Oeste do Atlântico Sul*. São Paulo. 140p. (Tese de Livre-Docência. Instituto Oceanográfico da Universidade de São Paulo)
- Garcez, D.S. 2000. Características, operacionalidade e produção da frota de linheiros no sudeste do Brasil. *Arq. Ciênc. Mar*, Fortaleza, 33:27-32
- Grimes, C.B., C.F. Idelberger, K.W. Able e S.C. Turner 1988. The reproductive biology of tilefish, *Lopholatilus chamaeleonticeps* Goode and Bean, from the United States Mid-Atlantic Bight, and the effects of fishing on the breeding system. *Fish. Bull.*, **86**(4):745-761
- Grimes, C.B. e S.C. Turner 1999. The complex life history of tilefish *Lopholatilus chamaeleonticeps* and vulnerability to exploitation. *Am. Fish. Soc. Symp.*, **23**:17-26
- Grossman, G.D., M.J. Harris e J.E. Hightower 1985. The relationship between tilefish, *Lopholatilus chamaeleonticeps*, abundance and sediment composition off Georgia. *Fish. Bull.*, **83**(3):443-447
- Gulland, J.A. 1983. *Fish Stock Assessment: a manual of basic methods*. FAO / Wiley series on food and agriculture, Vol.1:223p.
- Haimovici, M. 1997. *Recursos Pesqueiros Demersais da Região Sul*. FEMAR/ REVIZEE, Rio de Janeiro. 80p.
- Haimovici, M., A.O. Ávila-da-Silva, S.L.S. Tutui e G.C.C. Bastos 1998.
 Prospecção Pesqueira com Espinhel de Fundo. Relatório Técnico.
 Programa de Avaliação do Potencial Sustentável dos Recursos Vivos da Zona Econômica Exclusiva, Subcomitê Sul, REVIZEE Score Sul. 57p.

- Haimovici, M., A.O. Ávila-da-Silva, S.L.S. Tutui e G.C.C. Bastos 2001. Distribution and relative abundance of demersal fishes vulnerable to bottom longlines from the outer shelf and upper slope of southern and southeastern Brazil. In: *Abstracts of Deep-Sea Fisheries Symposium*, Varadero, 12-14 set., 2001. p.45
- Harris, M.J. e G.D. Grossman 1985. Growth, mortality, and age composition of a lightly exploited tilefish substock off Georgia. *Trans. Am. Fish. Soc.*, **114**(6):837-846
- Hastie, T.J. e D.P. Pregibon 1997. *Generalized Linear Models*. In: *Statistical Models in S*, Capítulo 6. John M. Chambers e Trevor J. Hastie (Eds.). Chapman & Hall Computer Science Series. Chapman & Hall, London: 195-247
- Hightower, J.E. e G.D. Grossman 1989. Status of the tilefish, *Lopholatilus chamaeleonticeps*, fishery off South Carolina and Georgia and recommendations for management. Fish. Bull., **87**(1):177-188
- Hilborn, R. e C.S. Walters 1992. *Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty*. Chapman e Hall, Nova lorgue. 570p.
- Hill, M.O. 1979. *TWINSPAN A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes*. Ithaca, NY: Ecology and Systematics, Cornel University. 48p.
- Huntsman, G.R., C.S. Manooch III e C.B. Grimes 1983. Yield per recruit models of some reef fishes of the U.S. South Atlantic Bight. *Fish. Bull.*, **81**(4):679-695
- Ihaka, R. e R. Gentleman 1996. R: A language for data analysis and graphics. *Journ. of Comput. and Graph. Stat.* **5**(3):299-314
- Jennings, S., M.J. Kaiser e J.D. Reynolds 2001. *Marine Fisheries Ecology*. Blackwell Science, Oxfrd. 417p.
- Jones, C.M. 2000. Fitting growth curves to retrospective size-at-age data. *Fish. Res.*, **46**:123-129
- Kimura, D.K. 1980. Likelihood methods for the von Bertalanffy growth curve. *Fish. Bull.*, **77**(4):765-776
- Kimura, D.K. e H.H. Zenger JR. 1997. Standardizing sablefish (Anoploma fimbria) long-line survey abundance indices by modeling the log-ratio of paired comparative fishing cpues. ICES J. Mar. Sci., 54:48-59
- King, M. 1995. *Fisheries Biology, Assessment and Management*. Fishing News Books, Blackwell Science Ltd., Oxford. 341p.
- Lassen, H. e P. Medley 2001. Virtual population analysis, a practical manual for stock assessment. *FAO Fish. Tech. Pap.* 400: 129p.

- Legendre, P. e L. Legendre 1998. *Numerical Ecology.* Developments in Environmental Modeling, 20. Elservier Science, New York. 853p.
- Leite-Jr., N.O. 1999. Determinação de idades e análise do crescimento do batata, Lopholatilus villarii Miranda - Ribeiro, 1915 (Teleostei: Branchiostegidae), no extremo sul do Brasil. Rio Grande. 39p. (Monografia de Graduação. Departamento de Oceanografia, FURG).
- Lima, A.C., C.E.C Freitas, M.A.P. Abuabara, M. Petrere Jr. e Batista V.S. 2000. On the standardization of the fishing effort. *Acta Amazon.*, **30**(1):167-169
- Lima, J.H.M., J.L. Helmer, P.M. Gomes e H.R. Silva 1985. Grupo de Trabalho sobre Peixes de Linha de Abrolhos e Mar Novo. In: *Relatório da Segunda Reunião do Grupo de Trabalho e Treinamento (GTT) sobre Avaliação de Estoques. PDP - Série Documentos Técnicos,* Brasília, **34**: 296-334
- Lindstrom, M.J. e D.M. Bates 1990. Nonlinear Mixed Effects Models for Repeated Measures Data. *Biometrics*, **46**: 673-687
- Longhurst, A.R. e D. Pauly 1987. *Ecology of tropical oceans*. Academic Press, San Diego. 407p.
- Magurran, A.E. 1988. *Ecological Diversity and its Measurement*. Croom Helm, London. 200p.
- Matheson III, R.H. e G.R. Huntsman 1984. Growth, mortality, and Yield-per-Recruit Models for Speckled Hind and Snowy Grouper from the United States South Atlantic Bight. *Trans. Am. Fish. Soc.*, **113**:607-616
- Matsuura, Y. 1986. Contribuição ao estudo da estrutura oceanográfica da região sudeste entre Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC). *Ciencia Cult*, S Paulo, **38**(8):1439-1450
- Matsuura, Y. 1995. Exploração pesqueira. In: Os Ecossistemas Brasileiros e os Principais Macrovetores de Desenvolvimento: Subsídios ao Planejamento da Gestão Ambiental, Capítulo 4.6. Projeto Cenários para o Planejamento da Gestão Ambiental, Secretaria de Coordenação dos Assuntos Ambientais, MMA, Brasília: 15pp.
- McCullagh, P. e J.A. Nelder 1989. *Generalized Linear Models* (2^a ed). Monographs on Statistics and Applied Probability 37. Chapman & Hall, Londres. 511p.
- McCune, B. e M.J. Mefford 1997. PC-ORD for Windows. Multivariate analysis of Ecological data. Version 3.20. MjM Software, Gleneden Beach, Oregon.

Mericas, C. 1978. Longlining for tilefish. Seafront, 24(6):370-374

Megrey, B.A. 1989. Review and comparison of age-structured stock assessment models from theoretical and applied points of view. *Am. Fish. Soc. Symp.*, **6**:8-48

Miranda, L.B. 1982. Análises de massas de água da plataforma continental e da região oceânica adjacente: Cabo de São Tomé (RJ) à Ilha de São Sebastião (SP). São Paulo. 194p. (Tese de livre docência. Instituto Oceanográfico, Universidade de São Paulo)

_____ 1985. Forma da correlação T-S de massa d'água das regiões costeira e oceânica entre o Cabo de São Tomé (RJ) e a Ilha de São Sebastião (SP). *Bolm Inst. Oceanogr.*, S Paulo, **33**(2):105-119

- Miyaji, C. 2001. Gastrópodes Prosobrânquios da Plataforma Continental Externa e Talude Superior da Costa Sudeste Brasileira – Estrutura das Associações e Desenvolvimento Larval. São Paulo. 138p. (Tese de doutorado. Instituto Oceanográfico, Universidade de São Paulo)
- Motulsky, H. 1995. *Intuitive Biostatistics*. Oxford University Press, New York. 386p.
- Müller, T.J., Y. Ikeda, N. Zangenberg e L.V. Nonato 1998. Direct measurements of western boundary current off Brazil between 20°S and 28°S. *J. Geophys. Res.*, **103**(C3):5429-5437
- Munro, J.L. e D. Pauly 1983. A simple method for comparing the growth of fishes and invertebrates. *Fishbyte*, **1**(1):5-6
- Muto, E.Y., L.S.H. Soares e C.L.D.B Rossi-Wongtschowski. 2000. Demersal fish assembleges off São Sebastião, southeastern Brazil: structure and environmental conditioning factors (summer 1994). *Rev. bras. oceanogr.*, 48(1):9-27
- Neiva, G.S. 1990. *Subsídios para a Política Pesqueira Nacional*. Terminal Pesqueiro de Santos, São Paulo. 64p.
- Neumann, G. e W.J. Pierson Jr. 1966. *Principles of physical oceanography.* Prentice-Hall, Inc. Englewood Cliffs, N.J.. 545p.
- Paiva, M.P. e M.F. Andrade 1994. Pescarias de barcos linheiros ao largo da costa sudeste do Brasil (1979-1985). *B. Téc. Inst. Pesca*, São Paulo, 18: 24p.
- Paiva, M.P. e M.F. Andrade-Tubino 1998^a. Produção, esforço e produtividade da pesca de linheiros ao largo da costa sudeste do Brasil (1979-1995). *UFRJ- Bol. Rec. Pesq.* 1: 21p.
- Paiva, M.P. e M.F. Andrade-Tubino 1998^b. Distribuição e abundância de peixes bentônicos explotados pelos linheiros ao largo do sudeste do Brasil (1986-1995). *Rev. Bras. Biol.*, **58**(4):619-632
- Paiva, M.P. e A.A. Fonteles-Filho 1997. Produção e produtividade das pescarias de barcos linheiros na área de Abrolhos (Brasil). *B. Téc. Inst. Pesca*, São Paulo, 22: 22p.

- Palko, B.J., L.G. Beardsley e W.J. Richards 1982. Synopsis of the biological data on dolphin-fishes, *Coryphaena hipppurus* Linnaeus and *Coryphaena equiselis* Linnaeus. *NOAA Tec. Rep. NMFS Circ.* 443. 28p.
- Parker, R.O. e R.W. Mays 1998. Southeastern U.S. deepwater reef fish assemblages, habitat characteristics, catches and life history summaries. *Tech. Rep. NOAA NMFS* **138**. 41p.
- Paula, G.A. 2000. *Modelos de regressão com apoio computacional*. hppt://www.ime.usp.br/~giapaula (não publicado)
- Pauly, D. 1980. On the relationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. *J. Cons. int. Explor. Mer.*, **39**(2):175-192

_____ 1983. Length-converted catch curves. A powerful tool for fisheries research in the tropics. (Part I). *Fishbyte*, **1**(2):9-13

_____ 1984a. Length-converted catch curves. A powerful tool for fisheries research in the tropics. (Part II). *Fishbyte*, **2**(1):17-19

_____ 1984b. Length-converted catch curves. A powerful tool for fisheries research in the tropics. (Part III). *Fishbyte*, **2**(3):9-10

- Pauly, D. e J.L. Munro 1984. Once more on the comparison of growth in fish and invertebrates. *Fishbyte*, **2**(1):21
- Peres, M. e M. Haimovici 1998. A pesca dirigida ao cherne-poveiro, *Polyprion americanus* (Polyprionidae:Teleostei) no sul do Brasil. *Atlântica*, Rio Grande, **20**:141-161
- Perez, J.A.A., R. Walhrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes e M. Rodrigues-Ribeiro 2001. Deep-sea fishery off southern Brazil: Recent trends of the Brazilian fishing industry. 2001 NAFO SCR Doc., 01(117). 22p.
- Pires-Vanin, A.M. e Y. Matsuura 1993. Estrutura e função do ecosistema de plataforma continental da região de Ubatuba, Estado de São Paulo: uma introdução. *Publção esp. Inst. Oceanogr.*, São Paulo, (10):1-8
- Pires-Vanin, A.M., C.L.D.B. Rossi-Wongtschowski, E. Aidar, H.S.L. Mesquita, L.S.H. Soares, M. Katsuragawa e Y. Matsuura 1993. Estrutura e função do ecosistema de plataforma continental da região de Ubatuba, Estado de São Paulo: síntese dos resultados. *Publção esp. Inst. Oceanogr.*, São Paulo, (10):217-231
- Quinn, T.J. II e R.B. Deriso 1999. *Quantitative Fish Dinamics*. Oxford Univesity Press, New York. 542p.
- Rossi-Wongtschowski, C.L.D.B. e E.T. Paes 1993. Padrões espaciais e temporais da comunidade de peixes demersais do litoral norte do Estado de São Paulo – Ubatuba, Brasil. *Publção esp. Inst. oceanogr.*, S Paulo, (10):169-188
- Sadorus, L.L. e G. St-Pierre 1995. IPHC research and management of Pacific Halibut in the Pribilof Islands through 1994. *Tech. Rep. IPHC*, **34**. 35p.
- Santos, A. e E. Rahn 1978. Sumário das explorações com espinhel de fundo ao longo da costa do Rio Grande do Sul. SUDEPE / PDP Relatório Síntese N/Pq "Mestre Jerônimo", Brasília, 4: 41p.
- Santos, R.S, R.W. von Seckendorff e M.L.F.M Amaral 1988. Espécies mais comercializadas na região sudeste do Brasil e respectivas artes e embarcações utilizadas nas capturas. *Bol. Tec. Inst. Pesca Sao Paulo*, 6: 31p.
- Scott, J.S. 1982. Selection of bottom type by groundfishes of the Scotian shelf. *Can. J. Fish. Aquat. Sci.*, **39**:943-947.
- Secor, D.H., J.M. Dean e S.E. Campana (Eds.) 1995. *Recent Developments in Fish Otolith Research*. University of South Carolina Press, Columbia. 735p.
- Siegel, S. 1975. *Estatística não-paramétrica para Ciências do Comportamento*. Makron Books do Brasil Editora Ltda., São Paulo. 350p.
- Siegler, M. e H.H. Zenger Jr. 1987. Assessment of Gulf of Alaska Sablefish and other groundfish based on the domestic longline survey. NOAA Tech. Mem. NMFS F/NWC, **169**: 54p.
- Sparre, P. e S.C. Venema 1998. Introduction to tropical fish stock assessment. Part I: Manual. *FAO Fish. Tech. Pap.* **306/1** (Rev.2): 407p.
- Steimle, F.W., C.A. Zetlin, P.L. Berrien, D.L. Johnson e S. Chang 1999. Tilefish, Lopholatilus chamaeleonticepis, life history and habitat characteristics. NOAA Tech. Mem. NMFS-NE **152**. 30p.
- Stramma, L. e M. England 1999. On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res., **104**(C9):863-883
- ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. *Ecology*, **67**: 1167-1179
- ter Braak, C.J.F. 1988. CANOCO: An extension of DECORANA to analyse species-environment relationships. *Vegetatio* **75**:159-160.
- ter Braak, C.J.F. 1995. Ordination. In: R.H.G. Jongman, C.J.F. ter Braak e O.F.R. van Tongeren (Eds.) *Data Analysis in Community and Landscape Ecology*. Cambridge University Press. Cambridge. 299p.

- The R Development Core Team, 2002. *The R Environmental for Statistical Computing and Graphics Reference Index, Version 1.5.0.* ISBN 3-901167-50-1, http://www.r-project.org>. 1092p.
- Tiago, G.G., S.L.S. Tutui, A.O. Ávila-da-Silva, L.S. Inácio, A.C.S. Serrão, D. Koshikene e F.G. Santos 1995. Pesca experimental e prospectiva com espinhel de fundo. In: VIII SEMANA NACIONAL DE OCEANOGRAFIA, 15-20 out., Fundação Universidade do Rio Grande, RS, 1995. *Resumos* ..., Rio Grande, RS. p.107
- Turner, S.C. 1986. Population dynamics of and, impact of fishing on tilefish, Lopholatilus chamaelonticeps, in the middle Atlantic-southern New England region during the 1970's and early 1980's. Tese de doutorado. New Brunswick Rutgers, The State University of New Jersey, New Jersey. 289p.
- Tutui, S.L.S., G.C.C. Bastos, A.R.G. Tomás, G.G. Tiago e L.A. Zavala-Camin 2000. Species composition of the exploratory fisheries with bottom longline off southeastern Brazil. *Ciência e Cultura Journ. Braz. Assoc. for the Advancement of Science*, **52**(1):55-58
- Uiblein, F., F. Bordest e R. Castillo 1996. Diversity, abundance and depth distribution of demersal deep-water fishes off Lanzarote and Fueteventura, Canary Islands. *J. Fish Biol.*, **49**(Suplemento A):75-90
- Uiblein, F, F. Bordest, R. Castillo e A.G. Ramos 1998. Spatial distribution of shelf- and slope- dwelling fishes collected by bottom longline off Lanzarote and Fuerteventura, Canary Islands. *Mar. Ecol.*, Berlin, **19**(1):53-66
- UTHSCSA, 1996. Image Tool. University of Texas Health Science Center at San Antonio, Texas (disponível para download na internet no site http://ddsdx.uthscsa.edu/dig/itdesc.html)
- Vazzoler, G. 1975. A pesca marítima no Brasil. In: Brian J. Rothschild (Ed.), *A Pesca: Seus Recursos e Interesses Nacionais*. IBRASA, São Paulo. 283-297
- Vazzoler, A.E.A.M. 1996. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática. EDUEM, Maringá. 169p.
- Venables, W.N. e B.D. Ripley 1997. *Modern Applied Statistics with S-Plus* (2^a ed.). Springer-Verlag, New York. 548p.
- Zar, J.H. 1996. *Biostatistical Analysis* (3^a ed.). Prentice-Hall, New Jersey. 662p.
- Zavala-Camin, L.A. e A. Puzzi 1974. Relatório da Pescaria de Linha no Arquipélago de Abrolhos e Mar Novo. In: *Relatório da Primeira Reunião do Grupo de Trabalho e Treinamento (GTT) sobre Avaliação de Estoques. PDP - Série Documentos Técnicos,* Brasília, 7: 114-117

Zembruscki, S.G. 1979. Geomorfologia da margem continental sul brasileira e das bacias oceânicas adjacentes. **In**: Chaves, H.A.I. (ed.) *Geomorfologia da margem continental sul brasileira e das áreas oceânicas adjacentes*. Petrobrás, Rio de Janeiro.

9 TABELAS

Tabela 1: Operações de pesca executadas pelo N/Pq O*rion* com indicação dos números de referência do cruzeiro e da operação, data, latitude, longitude, profundidade (Prof., m), esforço de pesca (E, 1000 anzóis-hora), número de peixes capturados (N) e captura por unidade de esforço (CPUE).

	CPUE	40,31	69,59	29,76	90,47	75,47	78,09	56,48	22,65	42,06	40,17	52,90	57,73	51,44	28,28	66,24	19,69	33,20	21,81	32,09	24,62	72,48	27,44	tinua
	z	184	354	78	213	179	67	146	23	137	120	108	77	125	7	143	64	125	61	43	17	172	62	con
	ш	4,56	5,09	2,62	2,35	2,37	0,86	2,59	1,02	3,26	2,99	2,04	1,33	2,43	2,51	2,16	3,25	3,77	2,80	1,34	0,69	2,37	2,26	
	Prof. m	248	245	252	264	246	259	210	147	240	260	214	234	294	262	256	274	256	206	177	210	210	216	
	Longitude	44°19,45'W	44°14,79'W	43°44,84'W	42°10,91'W	41°58,06'W	41°35,49'W	41°07,11'W	41°26,52'W	41°20,31'W	41°18,18'W	41°20,77'W	41°15,72'W	41°21,27'W	41°22,14'W	41°24,38'W	44°17,17'W	41°17,44'W	41°15,17'W	40°59,45'W	41°00,00'W	41°00,00'W	41°02,40'W	
	Latitude	24°23,55'S	24°22,30'S	24°16,03'S	23°38,72'S	23°39,30'S	23°43,94'S	23°22,92'S	23°38,93'S	23°37,18'S	23°35,25'S	23°37,33'S	23°32,67'S	23°37,42'S	23°39,27'S	23°41,39'S	24°23,58'S	23°34,89'S	23°22,88'S	23°12,84'S	23°15,00'S	23°15,00'S	23°16,78'S	
	Data	21/abr/94	22/abr/94	24/abr/94	25/abr/94	25/abr/94	26/abr/94	10/mai/94	26/mai/94	02/jun/94	02/jun/94	04/jun/94	04/jun/94	05/jun/94	05/jun/94	05/jun/94	22/jun/94	23/jun/94	24/jun/94	24/jun/94	27/jun/94	27/jun/94	28/jun/94	
	Operação	~	0	9	7	8	10	10	~	5	13	16	18	19	20	21	ო	5	9	2	10		12	
•	Cruzeiro	94/01	94/01	94/01	94/01	94/01	94/01	94/02	94/03	94/03	94/03	94/03	94/03	94/03	94/03	94/03	94/04	94/04	94/04	94/04	94/04	94/04	94/04	

CPUE	17,89	42,78	26,27	33,93	6,34	46,35	59,46	51,13	30,47	226,56	296,74	155,02	96,22	107,74	122,48	120,08	77,23	94,71	107,25	140,63	112,49	83,19	172,47	120,45	103,68	87,01	46,03	tinua
z	61	84	64	7	18	88	120	68	78	376	06	698	490	553	591	617	373	591	555	745	667	497	536	450	525	501	53	con
ш	3,41	1,96	2,44	2,09	2,84	1,90	2,02	1,33	2,56	1,66	0,30	4,50	5,09	5,13	4,83	5,14	4,83	6,24	5,18	5,30	5,93	5,97	3,11	3,74	5,06	5,76	1,15	
Prof. m	208	220	225	232	106	264	232	270	264	225	396	336	338	320	320	270	396	234	190	330	330	316	224	236	380	230	200	
Longitude	41°05,95'W	41°05,61'W	41°06,00'W	41°07,65'W	40°59,63'W	41°12,50'W	41°19,53'W	41°18,07'W	44°45,58'W	45°35,27'W	45°37,28'W	45°35,52'W	45°39,21'W	45°35,46'W	45°35,58'W	45°35,20'W	45°35,38'W	45°34,86'W	45°32,89'W	45°36,62'W	45°86,77'W	45°36,46'W	45°35,36'W	45°34,75'W	45°33,00'W	45°32,56'W	45°31,30'W	
Latitude	23°21,35'S	23°22,36'S	23°23,00'S	23°25,28'S	23°03,42'S	23°31,36'S	23°36,40'S	23°35,07'S	24°58,55'S	25°51,47'S	25°56,48'S	25°53,09'S	25°56,36'S	25°52,49'S	25°52,84'S	25°51,56'S	25°52,77'S	25°50,88'S	25°48,78'S	25°54,33'S	25°54,25'S	25°53,82'S	25°51,64'S	25°50,75'S	25°49,95'S	25°49,44'S	25°48,73'S	
Data	29/jun/94	29/jun/94	30/jun/94	30/jun/94	14/jul/94	16/jul/94	16/jul/94	17/jul/94	05/ago/94	06/ago/94	07/ago/94	08/ago/94	08/ago/94	09/ago/94	10/ago/94	10/ago/94	12/ago/94	12/ago/94	13/ago/94	13/ago/94	14/ago/94	14/ago/94	15/ago/94	15/ago/94	07/set/94	07/set/94	08/set/94	
Operação	15	16	17	18	5	ω	6	12	~	0	5	9	7	ω	0	10	-	12	13	14	15	16	17	18	0	ო	4	
Cruzeiro	94/04	94/04	94/04	94/04	94/06	94/06	94/06	94/06	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/07	94/08	94/08	94/08	

Tabela 1 (continuação)

continuação)
$\widetilde{}$
Tabela

CPUE	20,50	108,15	103,55	67,92	80,27	43,60	43,85	22,86	27,25	58,89	29,40	36,74	88,17	61,25	104,55	26,04	44,45	57,70	161,42	65,02	70,73	84,16	69,98	45,52	42,50	223,57	ntinua
z	104	554	561	367	420	242	277	53	121	321	65	48	98 08	131	165	37	23	68	204	163	251	160	268	134	119	240	con
ш	5,07	5,12	5,42	5,40	5,23	5,55	6,32	2,32	4,44	5,45	2,21	1,31	1,11	2,14	1,58	1,42	0,52	1,18	1,26	2,51	3,55	1,90	3,83	2,94	2,80	1,07	
Prof. m	225	275	275	275	275	175	175	225	275	250	244	152	262	266	262	232	210	210	210	234	278	269	269	184	184	310	
Longitude	45°45,94'W	45°38,00'W	45°38,00'W	45°36,10'W	45°31,00'W	45°22,00'W	45°22,00'W	45°18,88'W	45°07,78'W	45°39,84'W	43°02,22'W	41°32,50'W	41°14,10'W	41°15,02'W	41°06,31'W	41°06,44'W	41°05,00'W	41°21,00'W	42°30,00'W	46°18,65'W	46°16,83'W	46°30,69'W	46°08,55'W	46°34,73'W	46°32,81'W	45°37,77'W	
Latitude	25°46,30'S	25°51,00'S	25°51,00'S	25°53,71'S	25°50,00'S	25°46,00'S	25°46,00'S	25°47,61'S	25°35,61'S	25°54,90'S	23°54,57'S	23°42,66'S	23°32,63'S	23°33,17'S	23°24,20'S	23°23,74'S	23°25,00'S	23°37,00'S	23°45,00'S	26°07,21'S	26°09,47'S	26°26,38'S	26°03,67'S	26°16,00'S	26°14,32'S	25°54,00'S	
Data	09/set/94	10/set/94	10/set/94	11/set/94	11/set/94	12/set/94	13/set/94	14/set/94	14/set/94	15/set/94	26/set/94	27/set/94	29/set/94	29/set/94	30/set/94	30/set/94	01/out/94	01/set/94	01/out/94	08/out/94	08/out/94	10/out/94	10/out/94	11/out/94	11/out/94	12/out/94	
Operacão	5	7	ω	റ	10	12	13	14	15	17	£	7	12	13	15	16	18	19	20	-	0	2	9	7	ω	6	
Cruzeiro	94/08	94/08	94/08	94/08	94/08	94/08	94/08	94/08	94/08	94/08	94/09	94/09	94/09	94/09	94/09	94/09	94/09	94/09	94/09	94/10	94/10	94/10	94/10	94/10	94/10	94/10	

CPUE	173,21	119,69	35,28	31,24	125,35	113,28	142,44	103,38	41,56	31,50	27,15	40,44	23,48	23,09	34,96	67,52	33,36	29,68	51,00	21,79	89,17	81,19	106,57	79,29	81,07	86,11	61,90	tinua
z	194	334	43	94	394	438	483	279	182	157	104	142	112	115	161	266	152	128	254	114	500	464	527	434	420	488	382	con
ш	1,12	2,79	1,22	3,01	3,14	3,87	3,39	2,70	4,38	4,98	3,83	3,51	4,77	4,98	4,61	3,94	4,56	4,31	4,98	5,23	5,61	5,72	4,95	5,47	5,18	5,67	6,17	
Prof. m	314	310	236	236	268	200	100	378	198	209	156	284	148	166	136	148	144	312	255	264	392	360	402	360	362	400	406	
Longitude	45°37,50'W	45°37,31'W	45°39,53'W	45°54,44'W	45°37,48'W	45°36,92'W	45°36,29'W	45°35,47'W	44°53,00'W	44°49,00'W	45°11,51'W	44°50,44'W	45°03,39'W	45°00,53'W	45°55,32'W	45°08,92'W	45°01,49'W	46°20,26'W	45°58,90'W	45°59,03'W	45°29,68'W	45°29,13'W	45°29,84'W	45°30,35'W	45°29,43'W	45°29,58'W	45°29,67'W	
Latitude	25°53,99'S	25°54,73'S	25°47,33'S	25°53,59'S	25°56,33'S	25°55,59'S	25°55,85'S	25°55,21'S	25°13,00'S	25°05,00'S	25°16,36'S	25°10,41'S	25°19,78'S	25°18,53'S	25°24,73'S	25°21,22'S	25°18,14'S	26°13,44'S	25°57,62'S	25°58,05'S	25°49,40'S	25°48,68'S	25°49,68'S	25°49,96'S	25°49,09'S	25°48,41'S	25°49,65'S	
Data	12/out/94	12/out/94	13/out/94	13/out/94	14/out/94	14/out/94	15/out/94	15/out/94	23/out/94	23/out/94	27/out/94	27/out/94	28/out/94	28/out/94	30/out/94	31/out/94	31/out/94	01/nov/94	01/nov/94	02/nov/94	03/nov/94	03/nov/94	04/nov/94	04/nov/94	13/nov/94	13/nov/94	14/nov/94	
Operação	10	-	42	13	14	15	16	17	~	0	~	7	ო	4	5	7	8	റ	10	-	13	14	15	16	~	0	S	
Cruzeiro	94/10	94/10	94/10	94/10	94/10	94/10	94/10	94/10	94/11	94/11	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/12	94/13	94/13	94/13	

Tabela 1 (continuação)

Cruzeiro	Operação	Data	Latitude	Longitude	Prof. m	ш	z	CPUE
94/13	4	14/nov/94	25°50,55'S	45°30,66'W	428	5,01	445	88,79
94/13	2	15/nov/94	25°49,38'S	45°29,75'W	386	6,74	398	59,07
94/13	9	15/nov/94	25°55,84'S	45°37,40'W	366	5,33	459	86,16
94/13	7	16/nov/94	25°49,38'S	45°29,75'W	386	6,42	354	55,11
94/13	ω	16/nov/94	25°54,89'S	45°34,11'W	398	5,59	383	68,52
94/13	ത	17/nov/94	25°56,17'S	45°35,83'W	402	6,33	342	54,01
94/13	10	17/nov/94	25°57,20'S	45°40,70'W	390	5,59	240	42,92
94/14	-	23/nov/94	25°13,25'S	44°51,89'W	252	6,00	183	30,52
94/14	0	24/nov/94	25°13,34'S	44°53,01'W	238	3,76	192	51,03
94/14	ო	24/nov/94	25°20,88'S	44°57,69'W	228	3,91	169	43,19
94/14	2	25/nov/94	25°15,00'S	44°55,00'W	208	4,87	97	19,93
94/14	9	25/nov/94	25°14,88'S	44°55,29'W	200	3,81	82	21,53
94/14	7	26/nov/94	25°05,83'S	44°49,74'W	232	4,12	96	23,30
94/14	ω	26/nov/94	25°16,97'S	45°01,55'W	157	3,56	61	17,14
94/14	໑	26/nov/94	25°17,40'S	45°01,22'W	160	2,08	64	30,84
94/14	10	27/nov/94	25°10,62'S	45°03,74'W	142	3,16	57	18,02
94/14	11	27/nov/94	25°17,43'S	45°05,57'W	150	2,97	70	23,54
94/14	12	27/nov/94	25°17,64'S	45°03,42'W	150	1,57	23	14,61
95/01	~	09/fev/95	23°57,12'S	43°10,69'W	196	5,76	65	11,29
95/01	0	12/fev/95	23°55,43'S	43°05,12'W	208	5,80	113	19,49
95/01	2	13/fev/95	23°44,02'S	41°44,45'W	208	2,41	165	68,53
95/01	9	14/fev/95	23°43,50'S	41°46,36'W	224	6,29	199	31,65
95/01	໑	15/fev/95	23°36,98'S	42°03,47'W	216	2,98	109	36,63
95/01	10	16/fev/95	23°22,36'S	41°05,50'W	256	1,70	93	54,80
95/01	12	16/fev/95	23°33,31'S	41°15,65'W	196	0,53	34 8	64,72
95/01	13	16/fev/95	23°36,17'S	41°19,44'W	202	0,49	19	38,42
95/01	16	18/fev/95	23°52,12'S	42°56,75'W	220	2,62	67	25,59
							cont	tinua

7	
Tahala	ומטכומ

Data Lat Data Lat 19/fev/95 23°5 25/fev/95 23°5 25/fev/95 23°5 25/fev/95 25°5 25/fev/95 25°5 25/fev/95 25°5 26/fev/95 25°5 27/fev/95 25°5 28/fev/95 25°5 03/mar/95 25°5 13/mar/95 25°5 26/mar/95 25°5 26/mar/95 25°5 26/mar/95 25°5 27/mar/95 25°5 26/mar/95 27°0 26/mar/95 27°0 27/mar/95 27°0 <th>ituda Londituda Drofm E N CDLE</th> <th>0.95'S 42°53,14'W 226 2.89 38 13,15</th> <th>2,04'S 44°19,31'W 220 3,39 54 15,91</th> <th>3,93'S 44°53,69'W 226 5,37 103 19,18</th> <th>8,44'S 44°57,14'W 202 7,13 203 28,48</th> <th>3,14'S 44°59,80'W 212 6,94 108 15,56</th> <th>0,81'S 45°31,81'W 398 6,74 624 92,62</th> <th>7,00'S 45°39,62'W 388 6,55 690 105,42</th> <th>7,83'S 46°35,05'W 302 6,58 383 58,22</th> <th>6,48'S 46°35,29'W 290 5,43 304 56,02</th> <th>7,84'S 46°35,39'W 296 7,34 320 43,62</th> <th>8,39'S 46°30,47'W 326 5,95 274 46,02</th> <th>7,70'S 45°58,33'W 292 7,03 314 44,66</th> <th>8,03'S 45°59,48'W 286 6,52 297 45,53</th> <th>7,52'S 45°35,19'W 456 8,12 772 95,07</th> <th>7,74'S 45°35,23'W 440 7,68 587 76,46</th> <th>7,70'S 45°35,36'W 464 8,10 699 86,26</th> <th>4,65'S 44°59,64'W 182 0,81 59 72,50</th> <th>7,85'S 44°32,34'W 174 2,87 62 21,60</th> <th>7,54'S 45°35,16'W 411 4,42 305 68,99</th> <th>7,36'S 45°34,61'W 426 6,01 432 71,84</th> <th>6,32'S 45°34,93'W 408 4,74 337 71,09</th> <th>7,54'S 45°34,24'W 130 3,97 337 84,96</th> <th>6,04'S 46°51,33'W 278 5,76 350 60,74</th> <th>5,66'S 46°50,34'W 270 4,21 473 112,30</th> <th>3,42'S 46°46,87'W 270 6,25 526 84,14</th> <th>2,50'S 47°14,30'W 266 5,16 569 110,31</th> <th></th>	ituda Londituda Drofm E N CDLE	0.95'S 42°53,14'W 226 2.89 38 13,15	2,04'S 44°19,31'W 220 3,39 54 15,91	3,93'S 44°53,69'W 226 5,37 103 19,18	8,44'S 44°57,14'W 202 7,13 203 28,48	3,14'S 44°59,80'W 212 6,94 108 15,56	0,81'S 45°31,81'W 398 6,74 624 92,62	7,00'S 45°39,62'W 388 6,55 690 105,42	7,83'S 46°35,05'W 302 6,58 383 58,22	6,48'S 46°35,29'W 290 5,43 304 56,02	7,84'S 46°35,39'W 296 7,34 320 43,62	8,39'S 46°30,47'W 326 5,95 274 46,02	7,70'S 45°58,33'W 292 7,03 314 44,66	8,03'S 45°59,48'W 286 6,52 297 45,53	7,52'S 45°35,19'W 456 8,12 772 95,07	7,74'S 45°35,23'W 440 7,68 587 76,46	7,70'S 45°35,36'W 464 8,10 699 86,26	4,65'S 44°59,64'W 182 0,81 59 72,50	7,85'S 44°32,34'W 174 2,87 62 21,60	7,54'S 45°35,16'W 411 4,42 305 68,99	7,36'S 45°34,61'W 426 6,01 432 71,84	6,32'S 45°34,93'W 408 4,74 337 71,09	7,54'S 45°34,24'W 130 3,97 337 84,96	6,04'S 46°51,33'W 278 5,76 350 60,74	5,66'S 46°50,34'W 270 4,21 473 112,30	3,42'S 46°46,87'W 270 6,25 526 84,14	2,50'S 47°14,30'W 266 5,16 569 110,31	
	Data	19/fev/95	20/fev/95	25/fev/95	25/fev/95	26/fev/95	27/fev/95	27/fev/95	28/fev/95	28/fev/95	01/mar/95	01/mar/95	02/mar/95	02/mar/95	03/mar/95	03/mar/95	04/mar/95	09/mar/95	10/mar/95	12/mar/95	12/mar/95	13/mar/95	14/mar/95	25/mar/95	26/mar/95	26/mar/95	27/mar/95	28/mar/05
		95/01	95/01	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/02	95/03	95/03	95/03	95/03	95/03	95/03	95/04	95/04	95/04	95/04	OE/DA

Tabela 1 (continuação)

CPUE	67,71	41,38	65,81	13,27	57,21	92,95	69,42	55,43	27,67	77,38	63,79	53,92	49,25	43,84	40,95	29,33	49,76	41,70	45,37	22,90	39,31	40,55	36,69	66,88	26,94	68,93	49,01	tinua
z	349	312	507	78	415	341	371	104	147	389	283	269	225	197	227	196	191	193	104	9	157	101	80	86	<u></u>	130	204	cont
ш	5,15	7,54	7,70	5,88	7,25	3,67	5,34	1,88	5,31	5,03	4,44	4,99	4,57	4,49	5,54	6,68	3,84	4,63	2,29	3,97	3,99	2,49	2,18	1,29	1,15	1,89	4,16	
Prof. m	264	272	360	146	200	366	458	398	292	468	366	364	368	292	292	296	294	126	126	118	128	128	129	126	126	130	128	
Longitude	46°49,12'W	46°51,86'W	45°35,46'W	45°07,40'W	45°34,23'W	45°34,72'W	45°35,30'W	45°34,87'W	46°05,05'W	45°33,83'W	45°34,98'W	45°34,22'W	45°34,50'W	46°01,59'W	46°02,56'W	46°05,00'W	46°02,10'W	45°12,30'W	45°18,09'W	45°16,26'W	45°17,51'W	45°17,45'W	45°15,92'W	45°16,00'W	45°15,94'W	45°50,72'W	45°48,06'W	
Latitude	27°04,59'S	27°06,58'S	25°54,82'S	25°12,78'S	25°49,40'S	25°51,87'S	25°57,72'S	25°53,19'S	26°01,17'S	25°51,76'S	25°58,31'S	25°50,97'S	25°51,50'S	25°59,22'S	25°59,58'S	26°00,89'S	25°59,70'S	25°03,10'S	25°09,70'S	25°02,25'S	25°08,28'S	25°08,96'S	25°05,36'S	25°05,53'S	25°04,82'S	25°20,88'S	25°20,13'S	
Data	29/mar/95	29/mar/95	30/mar/95	31/mar/95	10/abr/95	10/abr/95	11/abr/95	11/abr/95	14/abr/95	15/abr/95	15/abr/95	16/abr/95	16/abr/95	17/abr/95	17/abr/95	18/abr/95	18/abr/95	19/abr/95	19/abr/95	19/abr/95	30/abr/95	30/abr/95	30/abr/95	01/mai/95	01/mai/95	01/mai/95	02/mai/95	
Operação	10	11	12	13	~	7	ო	4	Ð	9	7	ω	ത	10	11	12	13	14	15	16	~	0	ო	4	2	9	7	
Cruzeiro	95/04	95/04	95/04	95/04	95/05	95/05	95/05	92/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	95/05	92/06	92/06	92/06	92/06	92/06	92/06	92/06	

Tabela 1 (continuação)

(continuação
Tabela 1

 \sim

CPUE	123,88	39,08	32,41	51,78	45,75	60,77	44,56	34,93	26,29	32,70	30,09	17,98	19,01	11,99
Z	115	147	128	205	187	217	209	140	115	110	123	74	105	53
ш	0,93	3,76	3,95	3,96	4,09	3,57	4,69	4,01	4,37	3,36	4,09	4,12	5,52	4,42
Prof. m	127	132	134	134	134	132	132	134	132	126	146	133	133	134
Longitude	45°57,49'W	45°57,83'W	45°51,32'W	45°55,06'W	45°52,50'W	45°52,03'W	45°53,05'W	45°55,30'W	45°51,65'W	45°51,58'W	45°52,67'W	45°52,08'W	45°53,32'W	45°51,07'W
Latitude	25°27,14'S	25°22,96'S	25°21,19'S	25°21,90'S	25°21,39'S	25°20,67'S	25°21,20'S	25°22,32'S	25°20,36'S	25°18,75'S	25°25,71'S	25°20,44'S	25°21,01'S	25°21,14'S
Data	02/mai/95	03/mai/95	03/mai/95	04/mai/95	04/mai/95	05/mai/95	05/mai/95	06/mai/95	06/mai/95	07/mai/95	08/mai/95	08/mai/95	09/mai/95	09/mai/95
Operação	8	თ	10	11	12	13	14	15	16	17	18	19	20	21
Cruzeiro	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06	92/06

Tabela 2: Operações de pesca executados pelo B/Pq *Margus II* com indicação dos números de referência do cruzeiro e da operação, data, latitude, longitude, profundidade (Prof. m), esforço de pesca (E), número de peixes capturados (Nsp), e os índices de CPUE, de diversidade de Shannon (H') e de equitatividade de Pielou (Eq).

Cruzeiro	Oneracão	Data	l atitude	L onaitude	Prof m	ш	Z	<u>Vsn</u>	CPUF	Ť	БG
-	42	24/set/96	28°07,50'S	46°55,21'W	498	2,43	158	က	65,15	0,44	0,40
-	43	24/set/96	27°59,75'S	47°07,28'W	380	2,89	370	4	128,17	0,66	0,48
-	44	24/set/96	28°00,33'S	47°13,43'W	280	2,18	28	ო	12,87	0,41	0,37
-	45	25/set/96	27°56,15'S	47°23,80'W	180	2,36	19	ო	8,06	0,71	0,64
-	46	03/out/96	27°41,36'S	47°49,14'W	120	2,31	62	∞	26,90	0,80	0,38
-	47	04/out/96	26°54,05'S	46°47,64'W	200	3,10	102	4	32,95	0,94	0,68
-	48	04/out/96	26°37,61'S	47°15,00'W	122	2,26	68	ი	30,11	1,81	0,83
~	49	05/out/96	26°58,69'S	46°37,57'W	308	2,45	67	4	27,34	0,62	0,45
-	50	05/out/96	27°00,78'S	46°29,92'W	401	2,75	93	S	33,84	1,11	0,69
~	51	05/out/96	27°02,35'S	46°25,50'W	498	2,52	91	ო	36,11	0,80	0,73
-	52	06/out/96	26°14,26'S	45°54,08'W	497	2,72	245	2	89,96	0,25	0,36
~	53	06/out/96	26°10,84'S	46°07,23'W	413	2,68	114	9	42,54	1,1 4	0,64
-	54	06/out/96	26°04,71'S	46°09,16'W	301	2,03	50	9	24,65	1,30	0,72
~	55	07/out/96	25°58,17'S	46°10,48'W	182	2,15	12	4	5,58	1,08	0,78
~	56	07/out/96	25°54,44'S	46°14,03'W	153	2,18	16	ო	7,36	0,98	0,90
~	57	07/out/96	25°44,81'S	46°23,55'W	133	2,27	16	4	7,06	0,92	0,66
~	58	08/out/96	25°42,62'S	45°09,07'W	470	3,91	186	9	47,63	0,44	0,25
~	59	08/out/96	25°39,06'S	45°08,04'W	376	2,96	401	9	135,59	1,03	0,58
~	60	09/out/96	25°38,59'S	45°09,44'W	270	2,47	54	ი	21,85	1,74	0,79
~	61	09/out/96	25°40,02'S	45°14,20'W	170	2,23	81	2	36,36	0,77	0,39
~	62	09/out/96	25°28,79'S	45°22,33'W	138	2,19	116	4	53,05	0,22	0,16
-	63	12/out/96	24°40,50'S	44°52,88'W	133	2,68	16	Ŋ	5,98	1,30	0,81
~	64	12/out/96	24°47,70'S	44°40,45'W	185	2,95	85	2	28,85	1,33	0,68
-	65	13/out/96	24°51,39'S	44°32,05'W	483	2,61	176	7	67,45	1,00	0,51
										contir	nua

ção) 260 Doto Lotikudo Londitudo Drof m E N Non CDUE U' Ex	içao Data Latitude Longitude Prot. M E N NSP CPUE H Eq	66 13/out/96 24°52,72'S 44°37,65'W 378 2,60 99 4 38,06 0,83 0,60	67 13/out/96 24°50,56'S 44°37,11'W 282 2,04 78 6 38,30 1,19 0,66	68 13/out/96 24°49,44'S 44°40,06'W 223 1,92 59 8 30,76 0,88 0,42	69 14/out/96 24°19,22'S 43°42,97'W 480 2,65 90 5 33,94 0,53 0,33	70 14/out/96 24°17,82'S 43°43,16'W 375 3,46 160 4 46,22 0,54 0,39	71 14/out/96 24°16,41'S 43°44,03'W 278 2,38 33 5 13,85 1,10 0,68	72 15/out/96 24°14,36'S 43°42,80'W 219 2,77 64 4 23,11 1,15 0,83	73 15/out/96 24°12,04'S 43°43,91'W 179 2,38 53 9 22,26 1,69 0,77	74 15/out/96 24°05,30'S 43°48,19'W 145 1,99 10 3 5,03 0,80 0,73	75 16/out/96 23°52,00'S 42°43,66'W 482 2,62 133 7 50,81 1,24 0,64	76 16/out/96 23°50,29'S 42°44,17'W 376 2,99 96 8 32,05 1,06 0,51	77 16/out/96 23°49,28'S 42°44,60'W 280 2,51 137 4 54,57 0,33 0,24	78 17/out/96 23°48,61'S 42°46,25'W 219 2,40 68 7 28,38 1,22 0,63	79 17/out/96 23°46,55'S 42°48,19'W 180 3,73 47 6 12,61 1,49 0,83	80 17/out/96 23°44,05'S 42°51,07'W 140 1,89 37 5 19,56 0,95 0,59	81 20/out/96 23°22,48'S 41°57,79'W 136 2,76 57 8 20,62 1,35 0,65	82 20/out/96 23°40,67'S 41°48,06'W 181 2,53 30 5 11,87 1,23 0,76	83 20/out/96 23°42,95'S 41°48,86'W 236 2,34 68 9 29,07 1,28 0,58	84 21/out/96 23°46,13'S 41°51,05'W 480 3,08 163 7 53,00 0,35 0,18	85 21/out/96 23°44,66'S 41°50,30'W 376 2,77 82 7 29,62 1,36 0,70	86 21/out/96 23°43,55'S 41°49,80'W 280 2,77 225 9 81,34 0,45 0,21	87 22/out/96 23°17,35'S 41°09,33'W 134 2,40 34 4 14,20 0,91 0,65	88 22/out/96 23°19,99'S 41°04,24'W 180 2,85 12 4 4,21 0,98 0,71	89 24/out/96 23°12,99'S 40°58,94'W 478 2,70 75 6 27,83 0,81 0,45	90 24/out/96 23°16,24'S 41°01,35'W 375 3,29 88 7 26,76 0,63 0,32	91 24/out/96 23°15,96'S 41°01,67'W 266 3,81 49 6 12,85 1,28 0,72	92 25/nitt/96 22°27 47'S 40°17 29'W 486 2.55 86 7 33 75 0.97 0.50
	Data La	13/out/96 24°52	13/out/96 24°50	13/out/96 24°49	14/out/96 24°19	14/out/96 24°17	14/out/96 24°16	15/out/96 24°14	15/out/96 24°12	15/out/96 24°05	16/out/96 23°52	16/out/96 23°50	16/out/96 23°49	17/out/96 23°48	17/out/96 23°46	17/out/96 23°44	20/out/96 23°22	20/out/96 23°40	20/out/96 23°42	21/out/96 23°46	21/out/96 23°44	21/out/96 23°43	22/out/96 23°17	22/out/96 23°19	24/out/96 23°12	24/out/96 23°16	24/out/96 23°15	25/out/96 22°27
Tabela 2 (continuação)	Cruzeiro Operaçao	1 66	1 67	1 68	1 69	1 70	1 71	1 72 5	1 73	1 74	1 75	1 76	1 77 .	1 78	1 79	1 80	1 81 2	1 82 2	1 83 2	1 84 2	1 85 2	1 86 2	1 87 2	1 88 2	1 89 2	1 90 2	1 91 2	1 92 5

Щ	0,73	0,84	0,50	0,48	0,49	0,50	0,58	0,79	0,70	0,61	0,49	0,35	0,34	0,60	0,28	0,54	0,13	0,92	0,74	0,12	0,56	0,62	0,24	0,54	0,77	0,82	0,70	nua
Ť	1,17	1,64	0,97	0,94	0,78	0,55	0,80	1,09	1,47	1,18	0,87	0,56	0,62	0,96	0,45	0,74	0,18	1,28	1,18	0,16	1,17	1,11	0,47	1,04	1,23	1,70	1,37	contin
CPUE	20,98	16,77	36,00	111,04	21,45	12,70	10,74	7,45	26,57	12,89	23,87	77,60	49,97	50,31	115,07	45,03	124,34	2,86	9,55	64,37	28,20	51,63	122,02	109,28	4,73	13,07	14,49	
Nsp	2	7	7	7	ß	က	4	4	ω	7	9	2	9	2	2	4	4	4	2	4	ω	9	7	7	2	ω	7	
z	68	45	101	304	49	З1	23	17	76	36	61	238	153	156	332	123	289	7	25	168	73	119	315	420	12	36	43	
ш	3,24	2,68	2,81	2,74	2,28	2,44	2,14	2,28	2,86	2,79	2,56	3,07	3,06	3,10	2,89	2,73	2,32	2,45	2,62	2,61	2,59	2,31	2,58	3,84	2,54	2,76	2,97	
Prof. m	367	239	495	384	278	220	180	144	133	185	233	284	380	482	474	380	280	179	140	138	180	284	480	380	150	180	227	
Longitude	40°21,33'W	40°20,51'W	46°56,16W	47°07,07W	47°13,42W	47°16,88W	47°23,90W	47°31,14W	47°09,93°W	46°51,07'W	46°43,62 <i>°</i> W	46°39,21 W	46°31,78°W	46°26,39'W	46°02,19′W	46°09,17°W	46°11,99°W	46°15,67'W	46°22,19′W	45°21,97 <i>°</i> W	45°13,87°W	45°12,41 W	45°08,95°W	45°10,73°W	44°46,07 <i>°</i> W	44°40,58'W	44°39,57°W	
Latitude	22°28,76'S	22°26,33'S	28°08,80S	28°04,66S	28°00,62S	27°59,01S	27°56,26S	27°51,95S	26°44,25'S	26°53,74'S	26°56,87'S	26°58,63'S	27°01,14'S	27°02,40'S	26°16,73'S	26°08,88'S	26°05,31'S 4	26°01,24'S	25°47,29'S	25°28,51'S 4	25°40,24'S	25°42,84'S	25°42,55'S	25°42,60'S	24°45,25'S	24°47,75'S	24°48,89'S	
Data	25/out/96	25/out/96	08/mai/97	08/mai/97	08/mai/97	09/mai/97	09/mai/97	09/mai/97	15/mai/97	15/mai/97	16/mai/97	16/mai/97	17/mai/97	17/mai/97	18/mai/97	18/mai/97	18/mai/97	19/mai/97	19/mai/97	20/mai/97	20/mai/97	20/mai/97	21/mai/97	21/mai/97	26/mai/97	26/mai/97	26/mai/97	
Operação	93	94	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	
Cruzeiro	~	~	2	0	0	7	0	0	0	7	7	0	2	0	7	0	0	0	2	0	7	2	0	2	2	7	2	

Tabela 2 (continuação)

ontinuação)	
Tabela 2 (c	

Б	0,37	0,59	0,32	0,96	0,86	0,61	0,66	0,19	0,29	0,45	0,95	0,87	0,89	0,94	0,78	0,77	0,47	0,46	0,82	0,24	0,69	0,62	0,43	0,20	0,36	0,17	0,92	0.60
Ì	0,72	0,82	0,52	1,33	0,94	0,67	0,73	0,26	0,52	0,49	1,32	1,40	1,59	1,03	1,40	1,37	0,84	0,74	1,31	0,43	0,95	1,12	0,95	0,48	0,71	0,30	1,01	1.17
CPUE	15,81	57,48	70,55	1,83	6,77	28,42	96,75	64,23	85,37	32,65	3,20	15,44	4,85	6,01	9,61	14,33	24,88	40,36	32,59	104,33	7,03	12,99	75,96	130,48	78,90	72,64	4,52	16.90
Nsp	2	4	ß	4	က	ო	ო	4	9	ო	4	Ŋ	9	ო	9	9	9	Ŋ	Q	9	4	9	თ	5	2	9	က	2
Z	38	148	205	S	20	89	273	202	250	96	∞	43	13	<u>4</u>	22	36	62	121	76	265	19	38	205	408	245	212	42	46
Ш	2,40	2,58	2,91	2,73	2,95	3,13	2,82	3,15	2,93	2,94	2,50	2,79	2,68	2,33	2,29	2,51	2,49	3,00	2,33	2,54	2,70	2,93	2,70	3,13	3,11	2,92	2,65	2.72
Prof. m	295	379	488	150	202	293	382	501	480	400	292	220	150	170	151	181	232	282	380	480	148	184	281	492	380	481	379	246
Longitude	44°37,79'W	44°32,86°W	44°34,29'W	43°48,81 W	43°44,92'W	43°43,51 W	43°42,47 W	43°41,84 <i>°</i> W	42°44,05°W	42°40,76 <i>°</i> W	42°42,24 <i>°</i> W	42°44,04 'W	42°48,30'W	42°48,09°W	41°54,80°W	41°48,27°W	41°48,06°W	41°49,96°W	41°50,39'W	41°45,76°W	41°05,81°W	41°05,19'W	41°01,98°W	41°01,79°W	41°01,98°W	40°20,64 W	40°21,28°W	40°22.34 W
Latitude	24°49,90'S	24°47,70′S	24°53,25'S	24°07,71'S	24°13,82'S	24°16,70'S	24°17,73′S	24°18,98'S	23°52,15′S	23°49,08'S	23°48,51'S	23°47,88′S	23°44,07'S	23°45,61'S	23°29,58'S	23°40,51'S	23°43,07'S	23°43,50'S	23°44,75′S	23°47,92'S	23°19,80'S	23°20,10'S	23°18,03'S	23°17,47′S	23°17,13'S	22°30,08'S	22°28,84′S	22°27,57'S
Data	27/mai/97	27/mai/97	27/mai/97	28/mai/97	28/mai/97	30/mai/97	30/mai/97	30/mai/97	31/mai/97	31/mai/97	31/mai/97	01/jun/97	06/jun/97	07/jun/97	08/jun/97	08/jun/97	10/jun/97	10/jun/97	10/jun/97	11/jun/97	12/jun/97	12/jun/97	12/jun/97	13/jun/97	13/jun/97	14/jun/97	14/jun/97	15/jun/97
Operação	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188
Cruzeiro	2	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	2

ela 3:	Lista das	espécies capturada	as nas operações de pesca realizadas pelo N/Pq O <i>rion</i>	ו e pelo B/P <i>Margus II</i> .
	Classe	Família	Espécie	Nome comum
	Chondri	chthyes		
		Hexanchidae	Heptranchias perlo (Bonnaterre, 1788)	
			Hexanchus griseus (Bonnaterre, 1788)	
		Rajidae	Dipturus trachydermus (Krefft & Stehmann, 1975)	
		Dasyatidae	Dasyatis spp.	
		Myliobatidae	<i>Myliobatis</i> spp.	
		Scyliorhinidae	Scyliorhinus haeckelii (Miranda-Ribeiro, 1907)	
			Schroederichthys tenuis Springer, 1966	
		Squalidae	<i>Squalus</i> spp.	
			<i>Squalus acanthias</i> Linnaeus, 1758	
			Squalus mitsukurii Jordan & Snyder, 1903	
			Squalus megalops (Macleay, 1881)	
			Squalus cubensis Howell Rivero, 1936	
		Triakidae	<i>Mustelus canis</i> (Mitchill, 1815)	
	Osteicht	thyes		
		Ariidae	<i>Genidens barbus</i> (Lacepède, 1803)	bagre-branco
		Malacanthidade	Caulolatilus chrysops (Valenciennes, 1833)	batata-da-pedra
			Lopholatilus villarii Miranda-Ribeiro, 1915	peixe-batata
		Carangidae	Seriola dumerili (Risso, 1810)	
			Seriola lalandi Valenciennes, 1833	
		Congridae	Conger orbignianus Valenciennes, 1842	
		Coryphaenidae	<i>Coryphaena hippurus</i> Linnaeus, 1758	dourado
		Pomatomidae	Pomatomus saltatrix (Linnaeus, 1766)	enchova
		Phycidae	<i>Urophycis cirrata</i> (Goode & Bean, 1896)	abrótea-de-profundidade
		Lutjanidae	Ocyurus chrysurus (Bloch, 1791)	guaiúba
		Merluccidae	Merluccius hubbsi Marini, 1933	merluza
				continua

Ċ 4 1 Sõe τ Tabela 3: List

Tabela 3 (contir	nuação)		
Classe	Família	Espécie	Nome comum
	Pinguipedidae	Pseudopercis numida Miranda-Ribeiro, 1903	namorado
		Pseudopercis semifasciata (Cuvier, 1829)	namorado
	Muraenidae	<i>Gymnothorax</i> spp.	moréia
		<i>Gymnothorax ocellatus</i> Agassiz, 1831	moréia-pintada
	Ophidiidae	Genypterus brasiliensis Regan, 1903	congro-rosa
	Percophidae	Percophis brasiliensis Quoy & Gaimard, 1825	tira-vira
	Polymixiidae	<i>Polymixia lowei</i> Günther, 1859	barbudo
	Polyprionidae	Polyprion americanus (Bloch & Schneider, 1801)	cherne-poveiro
	Priacanthidae	Priacanthus arenatus Cuvier, 1829	Olho-de-cão
	Scombridae	Thunnus sp.	atum
	Sebastidae	Helicolenus dactylopterus lahillei (Normam, 1937)	sarrão
	Serranidae	Epinephelus flavolimbatus Poey, 1865	cherne-de-galha-amarela
		<i>Epinephelus itajara</i> (Lichtenstein, 1822)	
		<i>Epinephelus niveatus</i> (Valenciennes, 1828)	cherne-verdadeiro
	Sparidae	Pagrus pagrus (Linnaeus, 1758)	pargo
	Centrolophidae	Schedophilus velaini (Sauvage, 1879)	Seriolella christopherseni
	Tetraodontidae	Lagocephalus laevigatus (Linnaeus, 1766)	baiacú
	Molidae	<i>Mola mola</i> (Linnaeus, 1758)	peixe-lua
	Trichiuridae	<i>Trichiurus lepturus</i> Linnaeus, 1758	peixe-espada

Espécie	N	N%
Helicolenus dactylopterus lahillei	12098	26%
Lopholatilus villarii	10798	23%
Urophycis cirrata	7573	16%
Epinephelus niveatus	3494	7%
Squalus spp.	2999	6%
Pseudopercis numida	2006	4%
Scyliorhinus retifer	874	2%
<i>Gymnothorax</i> spp.	872	2%
Polyprion americanus	768	2%
Pseudopercis semifasciata	511	1%
Mustelus canis	499	1%
Heptranchias perlo	365	1%
Carcharhinus spp.	319	1%
Genypterus brasiliensis	305	1%
Outras	3225	7%
Total	46706	100%

Tabela 4: Números absoluto (N) e relativo (N%) de indivíduos capturados por espécies nas operações de pesca do N/Pq *Orion*

Tabela 5: Números absoluto (N) e relativo (N%) de indivíduos capturados por espécies nas operações de pesca do B/P *Margus* II

Espécie	Ν	N%
Urophycis cirrata	5833	51,8%
Lopholatilus villarii	1631	14,5%
Squalus spp.	1422	12,6%
Helicolenus dactylopterus lahillei	930	8,3%
Pseudopercis numida	321	2,9%
Epinephelus niveatus	190	1,7%
<i>Gymnothorax</i> spp.	187	1,7%
Merluccius hubbsi	150	1,3%
Polymixia lowei	134	1,2%
Carcharhinus spp.	82	0,7%
Mustelus spp.	76	0,7%
Genypterus brasiliensis	57	0,5%
Scyliorhinus spp.	35	0,3%
Pagrus pagrus	28	0,2%
Outras	174	1,5%
Total	11250	100%

Tabela 6: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos dados de *CPUE* das operações de pesca do *N/Pq* Orion.

	Gl	Deviância	GI Resid.	Dev Resid.	F	Pr(>F)
nulo			188	60,71		
profundidade	1	15,26	187	45,45	67,96	<u>3,01e-14</u>
latitude	1	2,00	186	43,46	8,89	<u>3,26e-03</u>
prof:lat	1	1,35	185	42,11	6,00	<u>0,0152</u>

Tabela 7: Médias da *CPUE* (n/1000ah) das três principais espécies capturadas por classes de latitude (°S) e profundidade (m) nas operações de pesca do N/Pq *Orion*.

Lat	prof. [100-300) m		prof. [300-500) m	
	Espécie	CPUE	Espécie	CPUE
[23-24)	Epinephelus niveatus	18,40	-	-
	cações	10,44	-	-
	Lopholatilus villarii	4,34	-	-
[24-25)	Lopholatilus villarii	12,48	-	-
	cações	8,50	-	-
	Epinephelus niveatus	5,33	-	-
[25-26)	Helicolenus dactylopterus	13,03	Helicolenus dactylopterus	39,70
	Squalus sp.	8,76	Urophycis cirrata	27,24
	Lopholatilus villarii	7,64	Lopholatilus villarii	13,71
[26-27)	Lopholatilus villarii	37,61	Lopholatilus villarii	28,08
	cações	8,84	Urophycis cirrata	6,24
	Pseudopercis numida	2,48	Cações	4,44
[27-28)	Lopholatilus villarii	53,05	Lopholatilus villarii	73,37
	Squalus sp.	7,49	Heptranchias perlo	11,53
	Heptranchias perlo	6,56	<i>Squalus</i> sp.	7,87

Tabela 8: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos dados de *CPUE* das operações de pesca do B/P *Margus II*.

	Gl	Deviância	GI Resid.	Dev Resid.	F	Pr(>F)
nulo			105	85,85		
profundidade	1	31,46	104	54,39	55,44	<u>3,78e-11</u>
latitude	1	2,14	103	52,25	3,78	<u>0,0548</u>
cruzeiro	1	0,09	102	52,15	0,16	0,6871
prof:lat	1	0,16	101	52,00	0,28	0,5986
prof:cruz	1	2,38	100	49,61	4,20	<u>0,0431</u>
lat:cruz	1	0,00	99	49,61	0,00	0,9864
lat:prof:cruz	1	0,45	98	49,16	0,79	0,3749

Tabela 9: Médias da *CPUE* (n/1000ah) das três principais espécies capturadas por cruzeiro (primavera e outono) e classes de latitude (°S) e profundidade (m) nas operações de pesca do B/P *Margus II*.

	Cruz	eiro de	primavera		CU	uzeiro c	te outono	
Latitude	prof. [100-300)	ш	prof. [300-500) m	prof. [100-300)	ш	prof. [300-500)	ш
_	Espécie	CPUE	Espécie	CPUE	Espécie	CPUE	Espécie	CPUE
[22-23)	P. numida	7,08	U. cirrata	15,64	L. villarii	11,02	U. cirrata	35,40
	L. villarii	2,98	M. hubbsi	6,93	Gymnothorax spp.	2,20	M. hubbsi	1,23
	E. niveatus	2,24	G. brasiliensis	1,68	P. numida	1,84	Squalus spp.	0,75
[23-24)	Squalus spp.	14,91	U. cirrata	21,15	U. cirrata	5,40	U. cirrata	65,72
	L. villarii	2,88	L. villarii	4,60	Squalus spp.	5,25	L. villarii	3,43
	P. numida	2,76	Squalus spp.	3,82	E. niveatus	2,65	H. dactylopterus	2,23
[24-25)	Squalus spp.	7,47	U. cirrata	26,83	L. villarii	4,06	U. cirrata	46,20
	L. villarii	6,42	L. villarii	12,27	U. cirrata	2,84	L. villarii	22,03
	Gymnothorax spp.	1,86	H. dactylopterus	3,83	Squalus spp.	1,68	P. lowei	1,80
[25-26)	Squalus spp.	14,20	U. cirrata	62,59	Squalus spp.	17,25	U. cirrata	88,97
	P. numida	2,17	H. dactylopterus	13,96	U. cirrata	6,23	H. dactylopterus	12,72
	U. cirrata	1,50	L. villarii	12,00	P. numida	6,00	L. villarii	8,98
[26-27)	Squalus spp.	14,16	U. cirrata	34,92	U. cirrata	35,13	U. cirrata	64,52
	L. villarii	4,91	L. villarii	5,21	L. villarii	6,57	L. villarii	8,24
	U. cirrata	4,21	H. dactylopterus	3,80	Gymnothorax spp.	0,63	H. dactylopterus	5,72
[27-28)	Squalus spp.	14,03	H. dactylopterus	35,59	Squalus spp.	4,11	U. cirrata	37,02
	L. villarii	0,85	L. villarii	14,37	L. villarii	3,55	Carcharhinus spp.	4,68
	U. cirrata	0,65	U. cirrata	12,98	Spheroides sp.	0,62	L. villarii	3,92
[28-29)	L. villarii	11,49	U. cirrata	55,67	L. villarii	16,64	H. dactylopterus	40,82
	U. cirrata	0,92	H. dactylopterus	9,07	P. numida	2,63	U. cirrata	24,72
_	P. numida	0,46	Squalus spp.	0,41	U. cirrata	1,31	L. villarii	4,20

Tabela 10: Análise de deviância para o modelo linear generalizado, baseado na distribuição normal com função de ligação logarítmica, ajustado aos valores de diversidade de Shannon calculados para as operações de pesca do B/P *Margus II*.

	GI	Deviância	GI Resid.	Dev Resid.	F	Pr(>F)
nulo			105	15,16		
profundidade	1	3,26	104	11,90	30,58	<u>2,66e-07</u>
latitude	1	0,52	103	11,38	4,84	<u>0,0302</u>
cruzeiro	1	0,07	102	11,32	0,62	0,4341
prof:lat	1	0,30	101	11,02	2,77	<u>0,0992</u>
prof:cruz	1	0,24	100	10,78	2,24	0,1380
lat:cruz	1	0,11	99	10,67	1,06	0,3062
lat:prof:cruz	1	0,21	98	10,46	1,99	0,1612

Tabela 11: Análise de deviância para o modelo linear generalizado, baseado na distribuição normal com função de ligação logarítmica, ajustado aos valores de diversidade de equitatividade calculados para as operações de pesca do B/P *Margus II.*

	GI	Deviância	GI Resid.	Dev Resid.	F	Pr(>F)
nulo			105	4,84		
profundidade	1	1,18	104	3,66	35,19	<u>4,51e-08</u>
latitude	1	0,07	103	3,58	2,14	0,1463
cruzeiro	1	0,00	102	3,58	0,09	0,7713
prof:lat	1	0,16	101	3,42	4,75	<u>0,0317</u>
prof:cruz	1	0,12	100	3,31	3,43	<u>0,0670</u>
lat:cruz	1	0,01	99	3,30	0,26	0,6127
lat:prof:cruz	1	0,01	98	3,29	0,27	0,6039

Tabela	12:	Espécies	selecionad	las	pelo	núme	ro o	de	indiví	duos	(N)	е	pela
freqüên	cia r	elativa de	ocorrência ((Fr)	nas o	peraçõ	ões (de	pesca	do N	/Pq	Orio	on.

Espécie	Ν	Fr
Carcharhinus spp.	319	25%
Caulolatilus chrysops	34	8%
Epinephelus flavolimbatus	93	6%
Epinephelus niveatus	3569	60%
Genypterus brasiliensis	305	45%
<i>Gymnothorax</i> sp.	886	72%
Helicolenus dactylopterus lahillei	12098	29%
Heptranchias perlo	365	22%
Hexanchus griseus	19	6%
Lopholatilus villarii	10815	72%
Merluccius hubbsi	199	22%
Mustelus canis	501	28%
Pagrus pagrus	123	7%
Polyprion americanus	768	18%
Priacanthus arenatus	18	5%
Pseudopercis numida	2016	69%
Pseudopercis semifasciata	511	8%
Scyliorhinus retifer	874	11%
Squalus spp.	2999	38%
Urophycis cirrata	7573	58%

Tabela 13: Espécies selecionadas pelo número de indivíduos (N) e pela freqüência relativa de ocorrência (Fr) nas operações de pesca do B/P *Margus II*

Espécie	Ν	Fr
Carcharhinus spp.	82	24%
Caulolatilus chrysops	12	8%
Epinephelus niveatus	190	31%
Genypterus brasiliensis	57	27%
<i>Gymnothorax</i> sp.	187	45%
Helicolenus dactylopterus lahillei	930	27%
Heptranchias perlo	27	17%
Lopholatilus villarii	1631	60%
Merluccius hubbsi	150	30%
<i>Mustelus</i> spp.	76	18%
Pagrus pagrus	28	8%
Polymixia lowei	134	26%
Polyprion americanus	18	5%
Pseudopercis numida	321	44%
Scyliorhinus spp.	35	15%
Squalus megalops	934	43%
Squalus mitsukurii	349	39%
Urophycis cirrata	5833	62%

Tabela 14: Freqüência relativa, abundância relativa, valores indicativos e nível de significância das espécies nos grupos de operações de pesca do N/Pq Orion determinados através da análise do TWINSPAN.

-													
Πεκτόσίο	Fredi	iência f	Relativ	/a	Abur	Idância	i Relati	va	Valor	es Ind	licativo	S	۵
rspecie	A	AB	BA	BB	Ą	AB	ΒA	BB	AA	AB	ΒA	BB	L
C. chrysops	0	93	0	7	0	15	0	ო	0	14	0	0	0,017
E. flavolimbatus	0	100	0	0	0	13	0	0	0	13	0	0	0,017
P. pagrus	0	100	0	0	0	15	0	0	0	15	0	0	0,011
H. perlo	36	47	2	4	38	Э	7	16	13	15	0	2	0,131
Mustelus canis	31	60	~	7	56	43	2	1	17	26	0	~	0,006
P. semifasciata	100	0	0	0	100	0	0	0	100	0	0	0	0,000
<i>Squalus</i> spp.	74	25	0	~	100	55	4	16	74	13	0	0	0,000
Carcharhinus spp.	0	65	13	22	0	33	17	29	0	21	2	9	0,021
P. arenatus	0	51	21	28	0	2	4	5	0	4	~	~	0,573
E. niveatus	~	48	29	21	19	78	57	42	0	38	17	თ	0,000
<i>Gymnothorax</i> sp.	1 4	44	38	4	63	88	83	34	ი	38	31	2	0,000
P. numida	17	38	40	4	63	86	91	13	1	33	37	~	0,000
G. brasiliensis	9	10	39	45	13	2	78	89	~	2	31	40	0,000
L. villarii	2	18	46	34	31	64	98 08	92	~	42	45	31	0,000
Scyliorhinus spp.	9	17	ო	74	13	ω	2	29	~	~	0	21	0,004
M. hubbsi	15	4 4	31	4	25	ი	30	50	4	~	ი	20	0,030
U. cirrata	15	5	29	51	100	26	89	100	15	~	26	51	0,000
H. dactylopterus	0	0	42	58	0	~	57	87	0	0	24	50	0,000
Hexanchus griseus	0	ო	29	68	0	~	13	16	0	0	4	-	0,040
P americanus	Ŋ	.	ო	92	25	~	-	68	-	0	0	63	0,000

de	
grupos	
nos	
espécies	NSPAN .
das	TWIN
significância	la análise do ⁻
e nível de	s através d
indicativos e	determinado
valores	Aargus II
relativa,	do B/P A
abundância	de primavera
relativa,	cruzeiro
Freqüência	de pesca do
15:	ŝões
Tabela	operaç

								Ī				Ī	
Esnácia	Еre	qüência	a Relativ	a	Abu	ndânci	a Relati	va	Valc	res Inc	dicativo	S	٩
Labecie	AA	AB	BA	BB	AA	AB	ΒA	BB	AA	AB	ΒA	BB	L
S. megalops	0	93	0	7	0	89	0	27	0	83	0	2	0,000
<i>Gymnothorax</i> sp.	41	49	10	0	60	67	30	0	25	33	ო	0	0,094
Mustelus spp.	72	28	0	0	60	37	0	0	4 3	10	0	0	0,012
C.chrysops	95	S	0	0	40	4	0	0	38	0	0	0	0,004
E. niveatus	70	27	4	0	60	37	10	0	42	10	0	0	0,012
P. pagrus	97	ო	0	0	40	4	0	0	39	0	0	0	0,006
P. numida	57	43	0	0	80	67	0	0	45	29	0	0	0,009
H. perlo	0	75	0	25	0	33	0	0	0	25	0	2	0,080
Scyliorhinus spp.	16	35	0	48	20	-	0	27	ო	4	0	13	0,333
S. mitsukurii	0	70	0	30	0	70	0	36	0	49	0	5	0,017
L. villarii	0	30	99	4	0	78	100	18	0	23	66	~	0,000
G. brasiliensis	0	15	4	43	0	19	60	45	0	ო	25	20	0,176
U. cirrata	2	7	38	50	20	33	100	100	~	2	38	50	0,001
Carcharhinus spp.	0	9	42	52	0	15	40	64	0	~	17	33	0,051
H. dactylopterus	0	2	48	50	0	4	50	82	0	0	24	4	0,014
M. hubbsi	0	7	23	70	0	19	60	64	0	~	1 4	45	0,017
P. americanus	0	0	100	0	0	0	20	0	0	0	20	0	0,039
P lowei	С	~	17	83	С	4	40	64	С	С	7	52	0 004

de	
grupos	
nos	
espécies	AN.
das	INSF
significância	inálise do TWI
de	da a
e nível	través
os e	os at
indicativ	erminado
valores	gus II det
relativa,	B/P Març
abundância	de outono do
relativa,	cruzeiro (
Freqüência	de pesca do
16:	ões
Tabela	operaç

Γερότιο	Fre	qüênci	a Relati	va	Abu	ndânci	a Relat	iva	Valo	ores In	dicativ	SO'	
rspecie	Ą	AB	ΒA	BB	AA	AB	ΒA	BB	AA	AB	ΒA	BB	L
Scyliorhinus spp.	30		9	53	43	1 4	-	20	13	2	~	11	0,522
S. megalops	<u></u>	35	0	35	71	45	0	80	22	16	0	28	0,160
S. mitsukurii	4	36	0	59	43	4	0	100	2	15	0	59	0,003
C.chrysops	88	12	0	0	43	о	0	0	38	~	0	0	0,004
E. niveatus	72	25	ო	0	100	45	-	0	72	-	0	0	0,001
<i>Mustelus</i> spp.	95	Ŋ	0	0	57	о	0	0	54	0	0	0	0,001
P. pagrus	63 03	7	0	0	57	വ	0	0	53	0	0	0	0,000
<i>Gymnothorax</i> spp.	∞	82	10	0	4	86	2	0	~	71	2	0	0,000
H. perlo	0	53	<u>+</u>	32	0	27	ъ 2	20	0	15	~	9	0,349
P. numida	58	42	0	0	86	86	0	0	50	36	0	0	0,005
L. villarii	ო	43	46	ω	4	82	58	20	0	35	27	2	0,080
G. brasiliensis	0	16	55	29	0	4	47	20	0	2	26	9	0,131
U. cirrata	0	5	55	35	0	50	100	100	0	2	55	35	0,000
M. hubbsi	0	7	4 4	49	0	б	47	60	0	~	2	29	0,094
Carcharhinus spp.	16	ъ 2	78	0	4	വ	42	0	2	0	33	0	0,037
H. dactylopterus	0	2	60	38	0	5	58	40	0	0	35	15	0,040
P. americanus	0	0	100	0	0	0	16	0	0	0	16	0	0,178
P. lowei	0	0	82	18	0	0	79	20	0	0	65	4	0,001

Tabela 17: Autovalores, coeficientes de correlação espécies-variáveis ambientais N/Pq *Orion*

Eixos	1	2	3	4	Total
Autovalores	0,36	0,16	0,04	0,35	2,57
Correlação espécies-variáveis ambientais	0,83	0,74	0,41	0,00	
Variação percentual cumulativa					
dos dados de espécie	14,00	20,30	21,60	35,20	
da relação espécies-ambiente	64,60	93,70	100,00	0,00	
Soma dos autovalores não condicionados					2,57
Soma dos autovalores canônicos					0,56

Tabela 18: Valores de correlação entre os eixos das espécies e as variáveis ambientais N/Pq *Orion*.

Variável / Eixo	1	2	3
Profundidade	0,81	0,07	-0,09
Longitude	0,29	-0,67	0,09
Latitude	0,45	-0,54	0,17

Tabela 19: Autovalores, coeficientes de correlação espécies-variáveis ambientais cruzeiro de primavera do B/P *Margus II*

Eixos	1	2	3	4	Total
Autovalores	0,60	0,10	0,39	0,32	2,73
Correlação espécies-variáveis ambientais	0,95	0,69	0,00	0,00	
Variação percentual cumulativa					
dos dados de espécie	22,10	25,90	40,30	52,10	
da relação espécies-ambiente	85,20	100,00	0,00	0,00	
Soma dos autovalores não condicionados					2,73
Soma dos autovalores canônicos					0,71

Tabela 20: Valores de correlação entre os eixos das espécies e as variáveis ambientais cruzeiro de primavera do B/P *Margus II*.

Variável / Eixo	1	2
Profundidade	-0,93	-0,16
Longitude	-0,17	0,68

¥					
Eixos	1	2	3	4	Total
Autovalores	0,56	0,07	0,39	0,35	2,61
Correlação espécies-variáveis ambientais	0,93	0,61	0,00	0,00	
Variação percentual cumulativa					
dos dados de espécie	21,50	24,20	39,20	52,50	
da relação espécies-ambiente	89,10	100,00	0,00	0,00	
Soma dos autovalores não condicionados					2,61
Soma dos autovalores canônicos					0,63

Tabela 21: Autovalores, coeficientes de correlação espécies-variáveis ambientais cruzeiro de outono do B/P *Margus II*

Tabela 22: Valores de correlação entre os eixos das espécies e as variáveis ambientais cruzeiro de outono do B/P *Margus II*.

Variável / Eixo	1	2
Profundidade	-0,67	-0,22
Longitude	-0,23	0,59

Tabela 23: Número de barcos com cruzeiros de pesca de linha-de-fundo registrados por frota e ano.

Ano	Niterói	Ubatuba	Santos	Total
1996	91	27	6	124
1997	89	21	6	116
1998	73	9	11	93
1999	70	14	9	93
Total	160	52	17	229

Tabela 24: Número de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo por ano e porto de desembarque.

Ano	Niterói	Ubatuba	Santos	Total
1996	564	104	47	715
1997	354	60	45	459
1998	275	16	84	375
1999	255	36	82	373
Total	1448	216	258	1922

Tabela 25: Produção (kg) das principais espécies demersais desembarcadas pelos barcos de linha-de-fundo por ano e porto. Para cada ano, a produção das três principais espécies desembarcadas por porto encontra-se sublinhada.

Ano	Espécie	Niterói	Ubatuba	Santos	Total (kg)	Total (%)
1996	L. villarii	<u>581639</u>	<u>19335</u>	18095	619069	36
	Pseudopercis spp.	<u>428116</u>	<u>41680</u>	<u>24810</u>	494606	29
	E. niveatus	<u>351410</u>	<u>38731</u>	<u>65560</u>	455701	27
	Epinephelus spp.	65	3564	<u>37600</u>	41229	2
	P. arenatus	36394	880	-	37274	2
	Outras	13844	27571	25530	66945	4
	Total 1996	1411468	131761	171595	1714824	100
1997	L. villarii	<u>503052</u>	<u>24595</u>	<u>61790</u>	589437	50
	E. niveatus	<u> 197735</u>	<u>37867</u>	<u>38709</u>	274311	23
	Pseudopercis spp.	<u>199372</u>	<u>20628</u>	<u>22430</u>	242430	21
	Pagrus pagrus	7940	14018	650	22608	2
	P. arenatus	10642	580	-	11222	1
	Outras	16192	2627	20677	39496	3
	Total 1997	934933	100315	144256	1179504	100
1998	L. villarii	<u>326847</u>	<u>6830</u>	<u>81900</u>	415577	39
	E. niveatus	<u>118224</u>	<u>6660</u>	<u>99380</u>	224264	21
	Pseudopercis spp.	<u>179963</u>	<u>4045</u>	29631	213639	20
	Genidens barbus	-	120	<u>115791</u>	115911	11
	M. furnieri	-	-	46577	46577	4
	Outras	27269	7749	18234	53252	5
	Total 1998	652303	25404	391513	1069220	100
1999	L. villarii	<u>266742</u>	<u>23160</u>	<u>92277</u>	382179	39
	Pseudopercis spp.	<u>160748</u>	<u>12655</u>	19284	192687	20
	Genidens barbus	4545	10010	<u>134932</u>	149487	15
	E. niveatus	<u>80831</u>	<u>16915</u>	33121	130867	13
	M. furnieri	-	-	<u>35436</u>	35436	4
	Outras	58219	7338	26442	91999	9
	Total 1999	571085	70078	341492	982655	100
Total	96 a 99 (kg)	3569789	327558	1048856	4946203	-

Tabela 26: Esforço de pesca (dias efetivos de pesca) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo por ano e porto de desembarque.

Ano	Niterói	Ubatuba	Santos	Total
1996	4743	953	439	6135
1997	3862	536	391	4789
1998	2950	118	694	3762
1999	2192	325	756	3273
Total	13746	1932	2280	17959

Tabela 27: Números absolutos (N) e relativos (N%) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, nos portos de desembarque de Niterói, Ubatuba e Santos, por classe de participação relativa da principal espécie capturada no peso total desembarcado.

Classe	Ν	N%
[20-25)	4	0,2
[25-30)	39	2,0
[30-35)	93	4,8
[35-40)	159	8,3
[40-45)	253	13,2
[45-50)	190	9,9
[50-55)	243	12,6
[55-60)	142	7,4
[60-65)	141	7,3
[65-70)	113	5,9
[70-75)	91	4,7
[75-80)	78	4,1
[80-85)	92	4,8
[85-90)	77	4,0
[90-95)	82	4,3
[95-100)	42	2,2
[100]	83	4,3

Porto e Esta	Porto de desembarque				
de procedência		Niterói	Ubatuba	Santos	
Vitória	ES	0,3	1,4	-	
Guarapari	ES	-	8,3	-	
Itapemirim	ES	0,5	0,5	-	
s/referência	ES	-	0,5	-	
Cabo Frio	RJ	0,4	0,9	0,4	
Niterói	RJ	97,5	14,8	0,4	
Angra / Parati	RJ	0,1	5,1	-	
Ubatuba	SP	0,3	67,1	-	
Santos	SP	-	1,4	96,1	
Itajaí	SC	0,9	-	2,5	

Tabela 28: Número relativo (%) de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, por portos de procedência e de desembarque.

Tabela 29: Número relativo (%) de desembarques por porto de cruzeiros direcionados para a captura de peixes demersais realizados pelos barcos de linha-de-fundo nos anos de 1996 a 1999, que reportaram operações de pesca por faixa de latitude*.

Latituda	Porto	Porto de desembarque				
Latitude	Niterói	Ubatuba	Santos			
[18-20)	0,3	-	-			
[20-22)	1,0	-	0,3			
[22-24)	43,1	8,4	6,5			
[24-26)	47,0	87,3	40,8			
[26-28)	12,8	8,4	30,2			
[28-30)	1,5	0,4	21,5			
[30-32)	0,2	-	5,3			
[32-34)	-	-	1,9			
[34-36)	-	-	0,3			

* um cruzeiro pode ter se referido a mais de uma faixa de latitude

Espécie	Município	1996	1997	1998	1999	Total
C. hippurus	Niterói	24	36	35	31	31
	Ubatuba	44	77	59	49	56
	Santos	6	20	7	11	10
E. niveatus	Niterói	89	67	61	64	73
	Ubatuba	82	95	65	83	83
	Santos	84	89	82	64	78
Epinephelus spp.	Niterói	0	1	1	2	1
	Ubatuba	15	15	46	32	22
	Santos	22	-	11	16	13
L. villarii	Niterói	84	75	71	72	77
	Ubatuba	53	49	14	49	46
	Santos	54	76	74	67	68
M. furnieri	Niterói	-	-	-	-	-
	Ubatuba	-	-	-	-	-
	Santos	12	4	30	48	27
Genidens barbus	Niterói	-	-	-	1	<1
	Ubatuba	5	1	3	4	4
	Santos	22	4	31	48	30
Pagrus pagrus	Niterói	7	15	9	14	11
	Ubatuba	57	78	86	79	70
	Santos	8	9	7	8	8
P. arenatus	Niterói	37	19	12	21	24
	Ubatuba	13	11	-	40	15
	Santos	-	-	-	1	<1
Pseudopercis spp.	Niterói	92	79	75	80	83
	Ubatuba	79	86	65	70	77
	Santos	72	82	65	66	70

Tabela 30: Freqüência relativa de ocorrência das principais espécies capturadas pelos barcos de linha-de-fundo por ano e porto de desembarque.

Tabela 31: Níveis explicativos de qualificação para o nível explicativo de 80% para as principais espécies capturadas pelos barcos de linha-de-fundo por ano e porto de desembarque.

Espécie	Ano	Niterói	Ubatuba	Santos
G. barbus	1996	-	5	43
	1997	-	-	76
	1998	-	17	62
	1999	95	83	65
C. hippurus	1996	40	36	7
	1997	98	44	19
	1998	100	15	11
	1999	73	6	19
L. villarii	1996	37	10	19
	1997	48	12	49
	1998	46	53	27
	1999	43	33	38
E. niveatus	1996	17	18	43
	1997	23	17	24
	1998	19	11	32
	1999	13	18	15
Pseudopercis spp.	1996	23	21	16
	1997	20	10	13
	1998	26	9	10
	1999	24	14	7
P. pagrus	1996	6	27	3
	1997	5	7	9
	1998	5	6	4
	1999	9	3	6
Epinephelus spp.	1996	3	11	50
	1997	25	2	-
	1998	24	15	3
	1999	14	6	3
M. funieri	1996	-	-	13
	1997	-	-	16
	1998	-	-	22
	1999	-	-	14
P. arenatus	1996	5	3	-
	1997	5	1	-
	1998	10	-	-
	1999	12	1	-

Tabela 32: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de *CPUE* de *Lopholatilus villarii* das frotas de linha-de-fundo de Niterói, Ubatuba e Santos, nos anos de 1996 a 1999.

	GI	Deviância	GI Resid.	Dev Resid.	F	<i>P</i> (>F)
nulo			553	282,56		
porto	2	20,56	551	262,00	30,35	6,58e-14
latitude	2	15,39	549	246,61	22,72	1,36e-10
ano	3	12,20	546	234,41	12,00	7,44e-08
trimestre	3	11,75	543	222,66	11,56	1,42e-07
longitude	4	4,35	539	218,31	3,21	0,0121
porto:trim	6	6,91	533	211,41	3,40	0,0024
ano:trim	9	13,26	524	198,15	4,35	1,09e-05

Tabela 33: Coeficientes do modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de *CPUE* de *Lopholatilus villarii* das frotas de linha-de-fundo de Niterói, Ubatuba e Santos, nos anos de 1996 a 1999.

Categoria	Coeficiente	Valor	Erro padrão	Pr(> z)
constante	α	5,1277	0,1182	< 2e-16
Porto Santos	β_2	-0,0861	0,1573	0,5842
Porto Ubatuba	β_3	-1,6049	0,3371	1,93e-06
Latitude 24	χ_2	0,2224	0,0772	0,0040
Latitude 26	χ_3	0,4408	0,1176	0,0002
Ano 1997	δ_2	-0,0057	0,2157	0,9788
Ano 1998	δ_3	-0,3958	0,1642	0,0160
Ano 1999	δ_4	-0,1686	0,1376	0,2207
Trimestre 2	φ_2	-0,5047	0,1086	3,34e-06
Trimestre 3	φ_3	-0,6358	0,1047	1,25e-09
Trimestre 4	$arphi_4$	-0,6886	0,1416	1,16e-06
Longitude 42	γ_2	0,3767	0,1137	0,0009
Longitude 44	Y3	0,3765	0,1090	0,0006
Longitude 46	γ_4	0,3042	0,1260	0,0158
Longitude 48	Y5	0,4531	0,1840	0,0138
Santos:Trim2	$eta arphi_{22}$	-0,0284	0,2450	0,9078
Ubatuba:Trim2	$eta arphi_{32}$	0,8769	0,3572	0,0141
Santos:Trim3	$eta arphi_{23}$	-0,2463	0,2226	0,2684
Ubatuba:Trim3	$eta arphi_{33}$	1,0325	0,3674	0,0049
Santos:Trim4	$eta arphi_{24}$	-0,0881	0,2236	0,6934
Ubatuba:Trim4	$eta arphi_{34}$	0,5486	0,3755	0,1440
1997:Trim2	$\delta arphi_{22}$	0,2367	0,2566	0,3564
1998:Trim2	$\delta arphi_{32}$	0,9000	0,2153	2,92e-05
1999:Trim2	$\delta arphi_{42}$	0,6018	0,1975	0,0023
1997:Trim3	$\delta arphi_{23}$	0,6257	0,2434	0,0101
1998:Trim3	$\delta \varphi_{33}$	0,2538	0,2084	0,2233
1999:Trim3	$\delta arphi_{43}$	0,6396	0,2186	0,0034
1997:Trim4	$\delta arphi_{24}$	0,4792	0,2663	0,0719
1998:Trim4	$\delta arphi_{34}$	0,5505	0,2575	0,0325
1999:Trim4	$\delta \varphi_{44}$	0,6026	0,2208	0,0063

Lf (mm)	1994	1995	1996	1997	1998	1999	Total
[150-200)	-	-	-	-	2	-	2
[200-250)	2	-	-	2	-	-	4
[250-300)	2	13	-	6	1	-	22
[300-350)	10	17	12	35	8	17	99
[350-400)	67	102	34	86	53	82	424
[400-450)	211	121	126	210	199	240	1107
[450-500)	485	329	166	322	422	472	2196
[500-550)	617	342	216	364	478	421	2438
[550-600)	654	415	230	366	442	303	2410
[600-650)	627	212	228	252	309	191	1819
[650-700)	529	198	112	153	240	109	1341
[700-750)	384	95	70	127	131	72	879
[750-800)	338	153	48	80	97	78	794
[800-850)	279	59	50	67	57	72	584
[850-900)	173	61	28	46	16	36	360
[900-950)	128	19	16	13	3	12	191
[950-1000)	86	11	4	-	-	4	105
[1000-1050)	7	1	-	2	-	3	13
[1050-1150)	7	3	-	-	-	-	10
[1150-1250)	-	1	-	-	-	-	1
Total	4606	2152	1340	2131	2458	2112	14799

Tabela 34: Distribuição anual de freqüência por classe de comprimento furcal, Lf (mm), de *Lopholatilus villarii* capturado por métodos de pesca de linha-defundo entre as latitudes de 22° e 28°S.

Tabela 35: Análise de deviância para o modelo linear generalizado, baseado na distribuição gama com função de ligação logarítmica, ajustado aos valores de comprimento furcal de *Lopholatilus villarii* capturado nas operações de pesca do B/P *Margus II* entre as latitudes de 22° e 28°S.

	GI	Deviância	GI Resid.	Dev Resid	F	Pr(>F)
nulo			1613	78,51		
profundidade	1	8,78	1612	69,73	219,96	< 2,2e-16
longitude	1	3,60	1611	66,13	90,13	< 2,2e-16
latitude	1	1,08	1610	65,05	27,09	1,95e-07
prof:lat	1	0,19	1609	64,86	4,66	0,0308

Tabela 36: Estimativa dos coeficientes da regressão linear do comprimento padrão em função do comprimento furcal de *Lopholatilus villarii*, Ls=a+bLf, seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis de significância (P) e o coeficiente de determinação (r^2).

Sexo	Coeficientes	Estimativa	IC+	IC-	Р
Fêmea	intercepto	-6,0767	1,4695	-13,6229	0,1140
	inclinação	0,8887	0,9022	0,8751	<2e-16
	r²	0,9845			
Macho	intercepto	-7,0108	-0,3500	-13,6716	0,0392
	inclinação	0,8891	0,9007	0,8775	<2e-16
	r²	0,9922			
Agrupado	intercepto	-6,3846	-1,3246	-11,4446	0,0135
	inclinação	0,8887	0,8977	0,8798	<2e-16
	r ²	0,9884			

Tabela 37: Estimativa dos coeficientes da regressão linear do comprimento total em função do comprimento furcal de *Lopholatilus villarii*, Lt= a+bLf, seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis de significância (P) e o coeficiente de determinação (r^2).

Sexo	Coeficientes	Estimativa	IC+	IC-	Р
Fêmea	intercepto	-6,9352	-2,0167	-11,8536	0,0059
	inclinação	1,0430	1,0518	1,0342	< 2e-16
	r²	0,9949			
Macho	intercepto	-8,2751	-2,4280	-14,1221	0,0058
	inclinação	1,0464	1,0565	1,0363	< 2e-16
	r²	0,9951			
Agrupado	intercepto	-7,7742	-4,0371	-11,5113	0,0001
	inclinação	1,0450	1,0515	1,0384	< 2e-16
	r²	0,9950			

Tabela 38: Estimativa dos coeficientes da regressão de potência do peso total em função do comprimento furcal de *Lopholatilus villarii*, Wt= aLf^b , seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis de significância (*P*) e o coeficiente de determinação (r²).

Sexo	Coeficientes	Estimativa	IC+	IC-	Р
Fêmea	а	4,42e-06	5,70e-06	3,13e-06	3,02e-11
	b	3,1820	3,2269	3,1371	< 2e-16
	r²	0,9766			
Macho	а	4,03e-06	4,99e-06	3,07e-06	1,11e-15
	b	3,1960	3,2318	3,1602	< 2e-16
	r²	0,9871			
Agrupado	а	4,26e-06	4,94e-06	3,58e-06	<2e-16
	b	3,1870	3,2111	3,1629	<2e-16
	r²	0,9826			
	nún	nero	porcer	ntagem	– 2
-------------	--------	--------	--------	--------	------------
Lt (mm)	fêmeas	machos	fêmeas	machos	Ρχ²
[240-270)	1	-	100,0	0,0	0,0000
[270-300)	3	-	100,0	0,0	0,0000
[300-330)	5	5	50,0	50,0	1,0000
[330-360)	13	6	68,4	31,6	0,0002
[360-390)	14	14	50,0	50,0	1,0000
[390-420)	60	32	65,2	34,8	0,0023
[420-450)	53	38	58,2	41,8	0,0994
[450-480)	76	55	58,0	42,0	0,1087
[480-510)	72	67	51,8	48,2	0,7189
[510-540)	86	58	59,7	40,3	0,0519
[540-570)	94	59	61,4	38,6	0,0221
[570-600)	96	42	69,6	30,4	0,0001
[600-630)	71	53	57,3	42,7	0,1465
[630-660)	82	30	73,2	26,8	0,0000
[660-690)	36	41	46,8	53,3	0,5157
[690-720)	29	13	69,1	31,0	0,0001
[720-750)	15	24	38,5	61,5	0,0210
[750-780)	8	25	24,2	75,8	0,0000
[780-810)	8	21	27,6	72,4	0,0000
[810-840)	5	23	17,9	82,1	0,0000
[840-870)	4	19	17,4	82,6	0,0000
[870-900)	2	10	16,7	83,3	0,0000
[900-930)	-	8	0,0	100,0	0,0000
[930-960)	-	-	-	-	-
[960-990)	-	6	0,0	100,0	0,0000
[990-1020)	-	3	0,0	100,0	0,0000
[1020-1050)	-	2	0,0	100,0	0,0000
total	833	654	56,1	43,9	0,2287

Tabela 39: Proporção sexual de *Lopholatilus villarii* por classe de comprimento furcal com indicação do nível de significância para o teste χ^2 .

Lf (mm)	fêmeas	machos	total
[250-300)	1	-	1
[300-350)	5	1	6
[350-400)	15	5	20
[400-450)	36	23	59
[450-500)	22	15	37
[500-550)	24	17	41
[550-600)	22	16	38
[600-650)	19	17	36
[650-700)	14	17	31
[700-750)	10	17	27
[750-800)	5	16	21
[800-850)	3	11	14
[850-900)	2	9	11
[900-950)	-	3	3
[950-1000)	-	3	3
total	178	170	348

Tabela 40: Número de otólitos de *Lopholatilus villarii* analisados por sexo e classe de comprimento furcal.

Tabela	41:	Número	de	otólitos	de	Lopholatilus	villarii	analisados	por	sexo	е
mês.											

mês	fêmeas	machos	total
jan	-	-	-
fev	14	15	29
mar	18	22	40
abr	2	16	18
mai	25	40	65
jun	22	12	34
jul	-	-	-
ago	11	2	13
set	6	1	7
out	51	47	98
nov	29	15	44
dez	-	-	_
total	178	170	348

anéis	fêmeas	machos	total
5	1	3	4
6	4	9	13
7	4	14	18
8	15	8	23
9	13	6	19
10	19	12	31
11	16	12	28
12	17	9	26
13	13	16	29
14	10	14	24
15	8	4	12
16	13	6	19
17	11	8	19
18	8	5	13
19	3	4	7
20	4	-	4
21	6	1	7
22	2	2	4
23	4	1	5
24	-	1	1
25	-	1	1
29	-	2	2
34	-	1	1
35	-	1	1
total	171	140	311

Tabela 42: Número de machos e fêmeas de *Lopholatilus villarii* por número de anéis etários lidos em otólitos *sagittae*.

Tabela 43: Estimativa dos coeficientes da regressão logística do comprimento
furcal em função do raio total do otólito de Lopholatilus villarii, Lf=a÷(1+b×c ^{Rt}),
seus intervalos de confiança (IC) ao nível de significância de 0,05, seus níveis
de significância (P) e o coeficiente de determinação (r ²).

Sexo	Coeficientes	Estimativa	IC-	IC+	Р
Macho	а	929,6025	912,4913	1006,7136	< 2e-16
	b	14,6895	10,2444	19,1345	1,68e-09
	С	0,2206	0,1764	0,2649	< 2e-16
	r²	0,9143			
Fêmea	а	835,2993	764,0286	906,5701	< 2e-16
	b	7,9468	5,3121	10,5814	1,62e-09
	С	0,2812	0,2044	0,3580	4,58e-12
	r²	0,8437			

asse etá	ria e	. Lf c) cor	nprir	nent	ů Ŭ	édio -	de ci	aptur	a).									-						
Idade	С	Ľ	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23
>	ო	401	115	162	214	283	354																		
>	ი	432	111	161	217	276	343	404																	
١١	1 4	442	108	155	205	262	315	370	415																
III	ω	456	107	150	200	253	301	346	390	431															
×	9	497	102	144	197	247	300	345	393	439	482														
×	12	600	108	152	206	260	313	371	428	485	535	576													
×	12	626	106	149	201	258	308	359	412	463	517	562	604												
IIX	თ	647	101	138	182	231	286	340	395	447	500	542	583	624											
IIIX	16	688	101	141	188	241	296	354	410	456	509	553	600	638	671										
XIX	1 4	720	108	153	203	254	301	354	405	456	507	551	595	638	672	704									
×	4	759	103	150	201	267	318	390	430	494	542	583	632	665	698	724	749								
X۷I	9	781	102	151	202	257	319	372	429	485	546	597	637	670	703	727	. 747	769							
II/X	∞	846	106	151	207	271	333	400	454	511	564	615	652	691	727	763	794	815 8	336						
XVIII	ß	819	106	154	209	265	324	376	428	471	523	565	607	643	682	715	744	771	789 8	809					
XIX	4	827	109	152	201	253	303	362	418	463	505	551	600	631	671	704	735 .	758	781 8	801 8	319				
IXX	~	903	104	141	202	252	279	327	361	408	456	506	552	578	615	647	681	705	736	757	787 8	311 8	326		
IIXX	2	856	109	161	219	269	341	389	431	467	503	539	575	617	648	690	724 .	754	764	791 8	306 8	319 8	335	849	
IIIXX	~	831	96	122	162	193	238	281	327	388	441	499	566	597	642	652	. 585	702	726	742	761 7	783	662	812	824
XXIV	~	780	95	120	167	205	240	288	340	402	398	485	525	576	603	639	653 (673 (392	714	729 7	746 7	155	. 203	769
XXV	~	848	101	133	149	173	207	259	294	366	399	460	517	579	626	665	702	724	756	771	781 8	303 8	808	822	831
XIXX	2	939	66	133	177	219	265	326	386	445	511	565	612	655	680	717	744	771	8 062	306	322 8	337 8	357	365	385
VIXXX	~	970	94	129	173	239	295	385	432	502	568	610	667	710	752	782	805	828	346	858	377 8	396	912	920	927
XXXV	-	970	92	118	155	187	221	257	299	348	401	449	494	524	565	612	653 (669	726	755	771 7	798 8	825	847 8	365
Média p	onde	rada	106	149	200	254	308	362	411	461	515	563	605	644	681	716	. 642	773	795	797 8	309 8	322 8	338	844	355
																							0	contir	nua

4	0
C	J.
-	-

Tabela 44 (continuação)

Idade	c	Ľ	24	25	26	27	28	29	30	31	32	33	34	35
XXIV	-	780	777											
XXV	~	848	840	845										
XIXX	2	939	896	606	919	925	932	937						
VIXXX	~	970	933	937	944	948	951	954	957	096	961	696	970	
VXXX	~	970	875	891	908	917	925	936	940	947	950	956	996	696
Média pc	nde	erada	870	898	922	928	935	941	949	953	956	962	968	696

<i>arii</i> (n representa o número de exemplares	
. Comprimento furcal (Lf mm) retrocalculado para fêmeas de <i>Lopholatilus villa</i>	etária e $\bar{\mathrm{L}}$ f o comprimento médio de captura).
Tabela 45	por classe

1	3																			ы	ы
	Ň																			ĬÖ Z	70
	22																		777	694	722
	21																	779	762	685	745
	20																648	766	749	671	711
	19															722	632	751	735	357	200
	18														321	902	319	. 36	. 47	340	965
	17													314	803 6	393	000	16	391	323 (338 (
	16												93	86	82	73 6	84 6	94 7	68	03	12 6
	15											0	71 5	78 5	60 5	46 6	64 5	69	39 G	80 6	91 G
	4										98	79 6	51 5	545	36 5	14 6	42 5	43 6	14 6	58 5	72 5
	13									82	75 5	59 5	20 5	31 5	08 5	36 6	14 5	13 0	84 6	33 5	37 5
	2								76	58 48	22 2:	37 5!	97 5.	4 3	78 5(52 58	37 5	35 6.	51 58)0 20	38 5;
	` ~							7	1 49	¥ 4	2 5	00 20	0.49	6 50	14 47	6 55	9 48	55	0 55	2 50	9 5(
	0						2	9 46	5 47	043	8 52	3 50	7 47	4 47	5	3 51	6 45	55 55	9 52	6 47	3 47
	-						.04	43	44	41	498	48;	.643.	44	41	48	6 42(51	48	6 43	44
	0)					437	382	407	415	383	463	453	405	412	384	438	395	478	455	405	414
	ø				408	406	358	377	383	357	423	414	371	378	347	400	366	446	407	379	385
	7			393	377	373	328	344	348	329	388	374	336	345	317	360	334	406	368	334	352
	9		339	352	343	339	297	312	313	297	347	338	303	312	285	324	300	363	329	299	319
	5	351	305	314	304	300	263	280	280	267	306	303	269	279	256	283	266	313	293	263	284
	4	307	262	269	264	260	227	246	244	232	264	260	237	236	227	252	228	269	251	223	246
	ო	269	218	218	219	215	196	209	209	199	219	223	200	197	197	210	193	221	206	187	207
	З	206	178	172	178	170	160	171	171	165	178	180	165	160	166	175	159	180	172	157	169
	~	148	135	140	139	132	128	134	135	133	138	141	133	126	134	140	127	140	139	128	134
	Ľ,	69	22	19	.56	23	22	8 ,	12	96		.13	03	24	30	.33	23	85	83	Ē	, ada
	c	1 3	4 3	4	5	ы 4	9 4	6 4	17 5	5 4	0	8	30	16	8	3 7	4	6 7	2 7	4 7	ndera
	Idade	>	, >	, II>	VIII 1	XIX 1	×	×	XII 1	XIIIX	XIV 1	×	X 1	XVII 1	XVIII	XIX	×	X	IXX	, IIIXX	média po
		1																			1 -

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 382 416 440 441 456 410 442 475 383 417 453 489 526 557 586 581 660 531 660 531 660 531 660 531 660 531 660 531 661 633 631 660 533 533 441 483 516 550 580 605 628 651 532 552 552 552 552 552 552 553 607 521 544 575 565 575 568 763
1 1410 2 382 416 382 416 482 380 417 453 380 417 453 380 417 453 380 417 453 380 417 453 380 417 453 380 414 478 510 541 383 405 444 478 510 541 393 441 483 516 560 603 651 653 393 441 483 516 560 631 655 633 656 637 633 656 637 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656 633 656
1 410 382 416 382 416 382 417 380 417 453 380 417 453 380 417 453 380 417 453 380 417 453 380 412 472 373 414 454 492 526 374 412 453 560 631 660 373 411 456 550 580 605 631 643 373 411 450 488 522 552 582 641 643 660 633 772 743 760 777 386 476 541 576 605 631 655 673 703 703 703 703 703 703 703 703 703 703 703 703 703 703 703 703
382 410 382 417 453 380 417 453 380 417 453 380 417 453 380 417 453 380 417 453 380 414 478 510 385 405 444 478 510 383 414 478 510 631 393 441 483 516 602 631 660 393 441 483 516 550 580 605 631 655 393 441 478 510 541 542 564 597 693 722 743 700 777 790 393 436 476 516 550 633 655 677 743 700 777 790 393 436 476 516 532 632 643 670
382 416 380 417 453 380 417 453 380 417 453 386 407 442 472 386 405 444 478 510 373 414 478 510 541 386 405 441 478 510 541 393 441 483 516 557 586 651 660 393 441 483 516 557 582 651 653 553 669 531 655 675 693 532 543 551 552 552 552 553 669 633 569 573 563 573 563 573 563 573 563 573 563 573 563 573 563 573 563 573 770 784 790 773 790 774 760 778 763<
380 417 453 367 407 442 472 373 414 454 492 526 373 414 478 510 541 376 405 444 478 510 541 371 412 453 489 526 557 586 398 442 489 520 557 586 651 548 393 441 483 516 550 582 607 627 648 393 441 483 516 550 582 607 627 648 393 441 488 522 582 607 627 648 393 341 476 516 550 583 653 653 653 653 653 653 654 597 707 709 703 305 304 476 516 556 564
3 3 5 4 07 4 4 2 4 7 2 3 3 5 4 14 4 54 4 9 2 5 5 6 5 5 8 6 5 1 5 8 6 3 3 5 4 05 4 4 4 7 8 5 10 5 4 1 5 10 5 4 1 3 3 7 4 12 4 5 3 4 8 5 5 6 5 5 7 5 8 6 7 5 8 6 7 5 8 6 7 5 8 6 7 6 8 7 6 8 7 8 3 3 4 1 4 8 3 5 1 6 5 5 0 5 8 0 6 5 5 8 6 7 6 8 7 6 8 8 7 0 8 5 8 6 7 6 8 7 6 8 8 7 0 8 3 3 4 1 4 8 3 5 1 6 5 5 0 5 8 6 1 4 6 2 6 6 9 7 0 8 7 0 8 5 8 7 6 9 8 9 7 0 8 3 3 4 1 4 8 3 7 4 7 5 1 6 5 5 5 8 2 6 7 5 6 9 7 2 7 1 7 7 0 7 8 4 7 9 8 7 7 7 9 7 7 7 0 7 8 4 7 8 7 7 7 0 7 7 7 0 7 8 4 7 8 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 0 7 7 0 7 7 0 7 7 7 7 0 7 7 7 7 0 7 7 7 7 0 7
3 73 414 454 492 526 3 65 405 444 478 510 541 3 77 412 453 489 526 557 586 3 98 442 489 529 567 603 631 660 3 98 441 478 516 550 603 631 660 3 303 441 489 522 552 582 607 627 648 3 303 441 488 522 552 582 607 627 648 3 303 441 488 522 552 582 607 627 643 728 741 700 3 303 436 516 530 631 655 673 603 648 723 700 717 790 3 303 436 514 543 643 643 641 703 741 700 777
365 404 478 510 541 3714 412 453 489 526 557 586 398 442 489 529 567 602 631 660 393 441 483 516 550 580 605 628 651 303 441 483 516 550 580 605 628 651 305 407 450 488 522 582 605 631 655 675 693 708 301 344 476 516 550 582 614 642 669 689 708 777 790 303 447 475 564 576 605 637 722 743 700 777 790 303 446 675 648 672 644 672 643 773 700 777 790 303 446
374 412 453 489 526 557 586 398 442 489 529 567 602 631 660 393 441 483 516 550 580 605 628 651 395 407 450 488 522 552 607 627 648 301 434 476 516 500 605 631 655 675 693 301 434 476 516 597 631 655 675 693 748 760 773 302 394 476 514 544 607 672 743 760 777 790 303 394 476 514 544 607 672 743 760 777 790 304 476 514 544 672 687 711 727 753 770 744 777 79
398 442 489 529 567 602 631 660 3303 441 483 516 550 580 605 628 651 3365 407 450 488 522 552 582 614 642 669 689 708 301 434 476 516 550 582 614 642 669 689 708 303 394 437 472 508 541 575 605 631 655 675 693 303 394 476 516 550 634 655 675 693 777 790 334 366 476 574 564 584 560 619 672 648 334 366 473 514 544 672 641 770 777 790 400 437 479 517 741 700
3 33 41 483 516 550 580 605 628 651 3 365 407 450 488 522 582 607 627 648 3 365 407 450 488 522 582 614 642 669 689 708 3 301 434 476 516 550 582 614 642 669 689 708 3 303 344 476 516 550 584 605 697 721 741 760 777 790 3 334 366 395 478 587 616 652 687 711 721 741 760 777 790 400 437 419 519 556 577 601 623 648 717 790 763 763 763 763 763 763 763 763 763 763 763 763 763
365 407 450 488 522 582 607 627 648 391 434 476 516 550 582 614 642 669 689 708 301 394 437 476 516 550 582 614 642 669 689 708 303 394 437 476 522 564 597 634 665 697 722 743 760 777 790 303 436 473 513 554 583 614 672 697 721 741 760 777 790 400 437 479 514 544 672 697 721 741 760 777 790 400 431 412 648 655 577 601 623 643 703 717 790 333 381 412 448 516
391 434 476 516 582 614 642 669 631 655 675 693 360 394 477 508 541 575 605 631 655 675 693 333 436 476 522 564 597 634 665 697 722 743 760 778 333 336 473 513 554 583 614 644 672 697 721 741 760 777 790 400 437 479 514 644 672 687 711 727 753 770 784 799 813 400 437 412 448 491 519 555 577 601 623 643 708 714 720 724 723 733 734 433 733 734 733 734 733 734 733 733
360 394 437 472 508 541 575 605 631 655 637 722 743 760 778 333 436 572 564 597 634 665 697 722 743 760 778 334 366 395 426 594 594 672 564 697 721 741 760 777 790 335 436 513 554 587 616 652 682 711 727 753 770 784 799 813 400 437 479 514 646 652 682 711 727 753 770 784 799 813 333 381 412 489 519 555 577 601 623 673 661 678 694 708 719 333 381 412 548 551 616 <t< td=""></t<>
393 436 476 522 564 597 634 665 697 722 743 760 773 790 334 366 395 426 459 487 514 542 564 584 600 619 632 648 395 473 513 554 583 614 672 697 721 741 760 777 790 400 437 479 514 543 616 652 682 711 727 753 770 784 790 813 333 381 412 448 519 555 577 601 623 643 661 678 703 769 733 769 733 340 402 399 460 511 717 744 771 729 763 763 769 386 445 511 770 806 822 <t< td=""></t<>
334 366 395 426 487 514 542 564 584 600 619 632 648 395 436 473 513 554 583 614 672 697 721 741 760 777 790 400 437 479 514 548 587 616 652 682 711 727 753 770 784 799 813 333 381 412 448 519 516 603 639 653 673 692 714 729 746 773 769 713 729 340 402 398 486 525 576 603 653 673 692 714 729 769 763 769 340 402 391 460 517 579 626 665 724 756 717 781 769 763 769 763
395 436 473 513 554 583 614 672 697 721 741 760 777 790 400 437 479 514 548 587 616 652 682 711 723 770 784 799 813 333 381 412 448 491 519 555 577 601 623 643 661 678 694 708 718 729 340 402 398 485 525 576 603 633 673 692 714 729 748 759 763 763 769 763 769 763 769 763 769 763 769 763 769 769 763 769 763 769 763 769 763 769 763 769 763 769 763 769 763 769 763 769 763 769
400 437 479 514 548 587 616 652 682 711 727 753 770 784 799 813 333 381 412 448 491 519 555 577 601 623 643 661 678 694 708 718 729 340 402 398 485 525 576 603 639 653 673 692 714 729 766 763 769 817 709 816 708 763 769 718 729 763 769
333 381 412 448 491 519 555 577 601 623 643 661 678 694 708 718 729 340 402 398 485 525 576 603 639 653 673 692 714 729 746 755 763 769 294 366 399 460 517 579 626 665 702 724 756 711 781 803 802 831 386 445 511 565 680 717 744 771 790 806 822 831 865 885 432 502 568 717 744 771 790 806 822 831 865 885 432 561 667 710 752 782 805 826 885 432 401 449 494 526 612 <t< td=""></t<>
340 402 398 485 525 576 603 639 653 673 692 714 729 746 755 763 769 294 366 399 460 517 579 626 665 702 724 756 771 781 803 822 831 386 445 511 565 612 655 680 717 744 771 790 806 822 831 855 885 432 502 568 610 667 710 752 782 805 828 846 858 877 896 912 920 927 299 348 401 449 494 524 565 612 653 699 726 771 798 826 847 865 877 378 416 456 494 555 612 653 699 726
294 366 399 460 517 579 626 665 702 724 756 771 781 803 802 831 833 833 834 835 835 831 835 835 831 835
386 445 511 565 612 655 680 717 744 771 790 806 822 837 857 865 885 432 502 568 610 667 710 752 782 805 828 846 858 877 896 912 920 927 299 348 401 449 494 524 565 612 653 699 726 755 771 798 825 847 865 378 416 456 494 533 567 602 634 652 675 703 720 746 787 795 801
432 502 568 610 667 710 752 782 805 828 846 858 877 896 912 920 927 299 348 401 449 494 524 565 612 653 699 726 755 771 798 825 847 865 378 416 456 494 533 567 602 634 652 675 703 720 746 787 795 801
299 348 401 449 494 524 565 612 653 699 726 755 771 798 825 847 865 378 416 456 494 533 567 602 634 652 675 703 720 746 754 795 801
378 416 456 494 533 567 602 634 652 675 703 720 746 754 787 795 801

Tabela 46: Comprimento furcal (Lf mm) retrocalculado para sexos agrupados de Lopholatilus villarii (n representa o número de exem

129

Tabela 46 (continuação)

Idade	c	Ľ	24	25	26	27	28	29	30	31	32	33	34	35
XIX	-	780	777											
XXV	~	848	840	845										
XIXX	2	939	896	606	919	925	932	937						
VIXXX	~	970	933	937	944	948	951	954	957	096	961	696	970	
VXXX	~	970	875	891	908	917	925	936	940	947	950	956	996	696
Média pc	pude	erada	870	898	922	928	935	941	949	953	956	962	968	969

(*P*), graus de liberdade (gl) e valores de performance de crescimento (ϕ ') para machos, fêmeas e sexos agrupados de *Lopholatilus villarii* ajustados sobre dados de (1) comprimento furcal médio retrocalculado por idade, (2) comprimento furcal retrocalculado por Tabela 47: Parâmetros da equação de crescimento de von Bertalanffy, intervalos de confiança (IC, α =0,05), nível de significância peixe por idade e (3) comprimento furcal na idade de captura.

-	-	-	-	-	-						-				
modelo Lt.		LT	. 0	0			Ŧ				ľ	0		5	- 4
valor IC-	valor IC-	Ċ		<u>÷</u>	Ρ	valor	<u>റ</u>	<u>+</u>	٩	valor	<u>ں</u>	<u>÷</u>	Р	<u>,</u>	¢
1 1045,17 1020,96 1	1045,17 1020,96 1	1020,96 1	-	069,04	< 2e-16	0,0792	0,0735	0,0849	< 2e-16	0,1976	-0,0941	0,4893	1,8e-01	32	4,937
2 1452,12 1374,38 1	1452,12 1374,38 1	1374,38 1	÷	529,86	< 2e-16	0,0438	0,0405	0,0471	< 2e-16	-0,7226	-0,8744	-0,5708	< 2e-16	1798	4,966
3 1036,62 953,58 11	1036,62 953,58 11	953,58 11	1	19,66	< 2e-16	0,0843	0,0666	0,1020	2,2e-16	0,0798	-0,7961	0,9557	8,6e-01	143	4,957
1 1151,54 967,27 133	1151,54 967,27 133	967,27 133	133	35,82	3,1e-11	0,0430	0,0310	0,0549	3,1e-07	-1,6398	-2,3387	-0,9410	8,8e-05	20	4,756
2 1210,47 1140,47 128	1210,47 1140,47 128	1140,47 128	128	30,48	< 2e-16	0,0381	0,0350	0,0412	< 2e-16	-2,0824	-2,2712	-1,8936	< 2e-16	2216	4,747
3 1789,94 -223,49 380	1789,94 -223,49 380	-223,49 380	380	3,37	8,1e-02	0,0199	-0,0121	0,0519	2,2e-01	-4,8696	-9,3494	-0,3899	3,3e-02	172	4,805
1 1205,18 1150,04 126	1205,18 1150,04 126	1150,04 126	126	30,32	< 2e-16	0,0492	0,0441	0,0543	< 2e-16	-0,8212	-1,2534	-0,3890	5,0e-04	32	4,854
2 1330,75 1267,90 139	1330,75 1267,90 139	1267,90 139	139	93,60	< 2e-16	0,0404	0,0378	0,0430	< 2e-16	-1,3600	-1,5125	-1,2075	< 2e-16	4017	4,855
3 1160.90 884.69 143	1160.90 884.69 143	884.69 143	4	37.12	3.8e-15	0.0474	0.0239	0.0709	8.9e-05	-2.3815	-4.6292	-0.1339	3.8e-02	314	4.806

as	
ntre	
a e	
siler	
bras	
sta	
00	
o dâ	
larg	
ao	
ado	
ptur	
Ca	
ados	
lupa	
ag	
soxe	
ii, S(
villar	
lus	
olati	
hdo	ſ
e L	1999
le d	4 7
idac	199
into-	Ч С
rime	Sou
Idmo	C S C
ы С	_ ري
,hav	28°
 	22 e
la 4	Jes Ves
abe	atituk
Η	

	24+	ı	ı	ı	ı	I	I	I	I	I	I	5,3	7,1	I	33,3	100
	23	ı	ı	ı	ı	ı	ı	ı	ı	7,1	7,4	ı	7,1	ı	ı	ı
	22	ı	ı	ı	ı	ı	ı	ı	ı	ı	3,7	ı	14,3	10,0	ı	ı
	21	I	ı	I	ı	ı	ı	I	I	3,6	ı	10,5	14,3	10,0	33,3	ı
	20	ı	I	ı	ı	ı	ı	3,2	3,0	3,6	3,7	I	I	ı	'	ı
	19	ı	ı	I	ı	ı	ı	I	I	3,6	3,7	10,5	14,3	10,0	ı	ı
	18	I	ı	I	ı	ı	ı	9,7	9,1	7,1	3,7	10,5		10,0	33,3	1
	17	I	ı	I	ı	ı	2,9	9,7	9,1	10,7	3,7	ı	28,6	40,0	ı	ı
	16	ı	ı	I	ı	3,2	5,9	6,5	18,2	ı	14,8	10,5	7,1	10,0	ı	ı
	15	ı	ı	I	ı	ı	8 8	3,2	6,1	3,6	7,4	10,5	ı	10,0	ı	1
	14	I	I	I	I	З,2	2,9	9,7	6,1	25,0	18,5	26,3	I	I	I	ı
	13	I	I	I	5,8	9,7	11,8	16,1	9,1	14,3	14,8	10,5	7,1	I	I	ı
	12	I	I	I	5,8	12,9	8 8	16,1	21,2	3,6	3,7	5,3	I	I	I	1
	11	I	I	5,3	9,6	9,7	23,5	6,5	9,1	14,3	7,4	I	I	I	I	ı
ם - ממי	10	I	80,0	10,5	15,4	12,9	11,8	12,9	6,1	3,6	7,4	I	I	I	I	ı
100	6	ı	ı	10,5	15,4	12,9	5,9	6,5	3,0	ı	ı	ı	ı	I	ı	ı
	8	I	ı	31,6	15,4	16,1	11,8	I	I	ı	ı	ı	ı	I	ı	ı
	7	I	ı	15,8	19,2	9,7	5,9	I	I	ı	ı	ı	ı	I	ı	ı
, v	9	100	I	21,1	11,5	6,5	I	I	I	I	I	I	I	I	I	1
0 77 0	5	I	20,0	5,3	1,9	3,2	I	I	I	I	I	I	ı	I	I	ı
ומוווחחבי	Lf	27,5	32,5	37,5	42,5	47,5	52,5	57,5	62,5	67,5	72,5	77,5	82,5	87,5	92,5	97,5

	largo da c	0310 5103			5 22 6 2
Ano	Z	IC-	IC+	Р	S
1994	0,1579	0,1471	0,1687	3,20e-08	85,39
1995	0,2155	0,1619	0,2691	6,36e-05	80,61
1996	0,1909	0,1649	0,2613	9,21e-05	80,81
1997	0,2038	0,1727	0,2349	1,35e-05	81,56
1998	0,2445	0,2242	0,2648	4,80e-06	78,31
1999	0,2256	0,1825	0,2688	5,18e-06	79,80

Tabela 49: Taxas anuais de mortalidade total (*Z*), intervalos de confiança (IC, α =0,05), nível de significância (*P*) e taxa de sobrevivência (*S*) de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as latitudes 22 e 28°S.

Tabela 50: Pesos totais, *Wt* (kg), estimados para o meio de cada classe de comprimento furcal, *Lf* (cm), de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as latitudes 22 e 28° S, nos anos de 1994 a 1999.

Lf (cm)	Wt (kg)
17,5	0,06
22,5	0,13
27,5	0,25
32,5	0,43
37,5	0,68
42,5	1,01
47,5	1,45
52,5	1,99
57,5	2,66
62,5	3,47
67,5	4,43
72,5	5,56
77,5	6,88
82,5	8,40
87,5	10,13
92,5	12,09
97,5	14,30
102,5	16,77
107,5	19,52
117,5	25,92

Lf (cm)	1995	1996	1997	1998	1999
17,5	-	-	-	0,1	-
22,5	-	-	0,3	-	-
27,5	3,3	-	1,5	0,3	-
32,5	7,3	5,2	15,1	3,5	7,3
37,5	69,4	23,1	58,5	36,1	55,8
42,5	122,7	127,8	213,0	201,8	243,4
47,5	475,6	240,0	465,5	610,0	682,3
52,5	680,1	429,5	723,9	950,6	837,2
57,5	1102,9	611,2	972,6	1174,6	805,2
62,5	734,9	790,3	873,5	1071,1	662,1
67,5	877,1	496,2	677,8	1063,2	482,9
72,5	528,5	389,4	706,5	728,7	400,5
77,5	1052,7	330,3	550,4	667,4	536,7
82,5	495,5	419,9	562,6	478,7	604,6
87,5	617,9	283,6	466,0	162,1	364,7
92,5	229,8	193,5	157,2	36,3	145,1
97,5	157,3	57,2	-	-	57,2
102,5	16,8	-	33,5	-	50,3
107,5	58,6	-	-	-	-
117,5	25,9	-	-	-	-
Total	7256,2	4397,2	6477,9	7184,4	5935,3

Tabela 51: Peso total, Wt (kg), amostrado por ano e por classe de comprimento furcal, Lf (cm), de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as latitudes 22 e 28°S.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>Lf</i> (cm)	1995	1996	1997	1998	1999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,5	-	-	-	0,002	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22,5	-	-	0,004	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27,5	0,045	-	0,023	0,004	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32,5	0,101	0,118	0,233	0,048	0,124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37,5	0,957	0,526	0,903	0,502	0,940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42,5	1,691	2,906	3,288	2,809	4,101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47,5	6,554	5,457	7,185	8,491	11,496
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52,5	9,373	9,769	11,174	13,231	14,106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57,5	15,199	13,900	15,015	16,350	13,567
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62,5	10,128	17,974	13,485	14,909	11,155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67,5	12,088	11,284	10,463	14,799	8,135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72,5	7,283	8,856	10,906	10,144	6,748
82,5 6,828 9,549 8,685 6,662 10,187 87,5 8,516 6,450 7,193 2,256 6,144 92,5 3,166 4,400 2,427 0,505 2,445 97,5 2,168 1,301 - - 0,964 102,5 0,231 - 0,518 - 0,848 107,5 0,807 - - - - 117,5 0,357 - - - -	77,5	14,508	7,511	8,497	9,290	9,042
87,5 8,516 6,450 7,193 2,256 6,144 92,5 3,166 4,400 2,427 0,505 2,445 97,5 2,168 1,301 - - 0,964 102,5 0,231 - 0,518 - 0,848 107,5 0,807 - - - - 117,5 0,357 - - - -	82,5	6,828	9,549	8,685	6,662	10,187
92,5 3,166 4,400 2,427 0,505 2,445 97,5 2,168 1,301 0,964 102,5 0,231 - 0,518 - 0,848 107,5 0,807 117,5 0,357 Total 100,000 100,000 100,000 100,000	87,5	8,516	6,450	7,193	2,256	6,144
97,5 2,168 1,301 0,964 102,5 0,231 - 0,518 - 0,848 107,5 0,807 117,5 0,357 Total 100,000 100,000 100,000 100,000	92,5	3,166	4,400	2,427	0,505	2,445
102,5 0,231 - 0,518 - 0,848 107,5 0,807 - - - - 117,5 0,357 - - - - Total 100,000 100,000 100,000 100,000 100,000	97,5	2,168	1,301	-	-	0,964
107,5 0,807 <u>117,5 0,357</u> Total 100,000,100,000,100,000,100,000	102,5	0,231	-	0,518	-	0,848
<u>117,5 0,357</u> Total 100,000,100,000,100,000,100,000	107,5	0,807	-	-	-	-
Total 100.000 100.000 100.000 100.000 100.000	117,5	0,357	-	-	-	-
	Total	100,000	100,000	100,000	100,000	100,000

Tabela 52: Participação relativa (%) anual do peso de cada classe de comprimento furcal, *Lf* (cm), de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as latitudes 22 e 28°S.

Tabela 53: Captura (kg) de *Lopholatilus villarii* ao largo da costa brasilera entre as latitudes 22 e 28°S, desembarcada pela frota de linha-de-fundo nos portos de Niterói, Santos e Ubatuba nos anos de 1995 a 1999.

Porto	1995	1996	1997	1998	1999
Niterói	1285249	581639	503052	326847	266742
Ubatuba	3501	19335	24595	6830	23160
Santos	75718	18095	61790	81900	92277
Total	1364468	619069	589437	415577	382179

Tabela 54: Estimativa do peso total (kg) desembarcado, por ano e por classe de comprimento furcal, *Lf* (cm), de *Lopholatilus villarii* capturado ao largo da costa brasilera entre as latitudes 22 e 28° S.

Lf (cm)	1995	1996	1997	1998	1999
17,5	-	-	-	6,9	-
22,5	-	-	24,3	-	-
27,5	619,1	-	138,3	14,6	-
32,5	1378,8	728,7	1373,6	199,6	472,1
37,5	13052,8	3257,6	5325,3	2086,3	3593,2
42,5	23074,2	17989,6	19377,9	11673,5	15671,8
47,5	89430,2	33783,7	42353,5	35286,4	43933,6
52,5	127890,8	60475,2	65865,8	54985,5	53909,1
57,5	207383,9	86052,8	88502,1	67944,8	51848,5
62,5	138188,2	111270,6	79484,3	61958,5	42632,0
67,5	164938,4	69853,0	61672,8	61500,0	31092,1
72,5	99377,1	54824,1	64285,4	42154,2	25790,6
77,5	197952,7	46496,7	50084,8	38605,5	34556,6
82,5	93165,8	59113,2	51194,7	27687,7	38931,7
87,5	116191,7	39931,3	42398,3	9375,0	23480,9
92,5	43202,9	27238,9	14303,7	2098,4	9343,4
97,5	29581,2	8053,7	-	-	3683,4
102,5	3153,9	-	3052,2	-	3239,9
107,5	11012,5	-	-	-	-
	4873,9	-	-	-	-
Total	1364468,0	619069,0	589437,0	415577,0	382179,0

Lf (cm)	1995	1996	1997	1998	1999
17,5	-	-	-	115,7	-
22,5	-	-	182,0	-	-
27,5	2444,6	-	545,9	57,8	-
32,5	3196,7	1689,5	3184,7	462,8	1094,6
37,5	19180,3	4786,8	7825,3	3065,8	5280,0
42,5	22753,1	17739,3	19108,2	11511,1	15453,8
47,5	61866,0	23370,8	29299,3	24410,4	30392,4
52,5	64310,5	30410,3	33121,0	27649,7	27108,5
57,5	78037,6	32381,3	33302,9	25567,3	19510,4
62,5	39865,0	32099,7	22929,9	17874,0	12298,6
67,5	37232,4	15768,3	13921,7	13882,7	7018,6
72,5	17864,0	9855,2	11555,9	7577,6	4636,1
77,5	28770,5	6757,8	7279,3	5610,9	5022,5
82,5	11094,5	7039,4	6096,4	3297,1	4636,1
87,5	11470,6	3942,1	4185,6	925,5	2318,1
92,5	3572,8	2252,6	1182,9	173,5	772,7
97,5	2068,5	563,2	-	-	257,6
102,5	188,0	-	182,0	-	193,2
107,5	564,1	-	-	-	-
117,5	188,0	-	-	-	-
Total	404667,4	188656,2	193903,2	142182,1	135993,0

Tabela 55: Estimativa do número de indivíduos desembarcados, por ano e por classe de comprimento furcal, *Lf* (cm), de *Lopholatilus villarii* capturado ao largo da costa brasileira entre as latitudes 22 e 28° S.

Tabela 56: Estimativa do número de indivíduos de *Lopholatilus villarii* desembarcados por ano e por classe etária, provenientes de capturas realizadas ao largo da costa brasileira entre as latitudes 22 e 28°S.

Idade	1995	1996	1997	1998	1999
5	4092	1685	2366	1264	1777
6	13130	4562	6300	3609	4862
7	17214	8218	9712	6692	8353
8	27165	11588	14060	9937	12153
9	23583	11099	12359	9068	10095
10	38854	18595	21068	14318	14798
11	39709	19365	19993	15968	14827
12	39610	20038	19385	15253	13667
13	42963	19931	20231	15973	13856
14	34122	14273	14094	11518	8358
15	17477	8072	7939	6093	5129
16	25736	13537	12567	9362	7859
17	25536	12589	11639	7999	6989
18	19910	9400	8325	6117	4704
19	7770	3039	2987	1932	1848
20	5730	2945	2699	2145	1426
21	8300	3425	2953	1709	1934
22	3402	1765	1721	845	1067
23	4786	2359	2290	1790	1178
24+	5579	2173	1215	589	1112
Total	404667	188656	193903	142182	135993

Tabela 57: Taxas de mortalidade por pesca (*F*) por classe etária e por ano, e taxa média de mortalidade por pesca ($\overline{F}_{5,23}$), estimadas pela análise de população virtual para *Lopholatilus villarii* da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idade	1995	1996	1997	1998	1999
5	0,02	0,01	0,01	0,01	0,01
6	0,08	0,03	0,04	0,02	0,03
7	0,11	0,06	0,07	0,05	0,06
8	0,17	0,09	0,12	0,08	0,10
9	0,16	0,09	0,11	0,09	0,10
10	0,30	0,17	0,22	0,17	0,20
11	0,33	0,21	0,25	0,23	0,24
12	0,39	0,24	0,31	0,28	0,29
13	0,51	0,31	0,37	0,40	0,39
14	0,51	0,28	0,34	0,34	0,34
15	0,31	0,19	0,23	0,22	0,22
16	0,56	0,37	0,46	0,41	0,44
17	0,71	0,52	0,56	0,54	0,55
18	0,87	0,56	0,70	0,58	0,64
19	0,54	0,27	0,31	0,31	0,31
20	0,44	0,36	0,37	0,34	0,35
21	0,89	0,46	0,66	0,37	0,52
22	0,59	0,42	0,40	0,36	0,38
23	1,01	0,96	1,39	0,83	1,11
24+	0,83	0,61	0,82	0,52	0,67
F 5, 23	0,45	0,29	0,36	0,30	-

calculada para as idades 5 a 23.

Tabela 58: Taxas médias de mortalidade por pesca (\overline{F}) para diferentes faixas etárias nos anos de 1995 a 1998, estimadas pela análise de população virtual para *Lopholatilus villarii* da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idades	Ē
5 - 23	0,35
7 - 23	0,39
9 - 23	0,43
11 - 23	0,47
13 - 23	0,50
15 - 23	0,53
17 - 23	0,58
19 - 23	0,56
21 - 23	0,70

Tabela 59: Número total de indivíduos por classe etária no início de cada ano, estimados pela análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28° S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idade	1995	1996	1997	1998	1999
5	204610	205376	205580	200740	199537
6	191467	179427	182389	181927	178635
7	181903	159111	156422	157432	159563
8	181157	146686	134767	130946	134705
9	165798	136629	120453	107442	107912
10	159768	126251	111906	96226	87679
11	150523	106469	95537	80359	72679
12	128751	97390	77095	66714	56914
13	112994	78001	68331	50777	45372
14	89745	60770	51076	42140	30432
15	69915	48267	40972	32464	26888
16	63383	46145	35616	29209	23330
17	52670	32558	28575	20068	17343
18	36007	23181	17314	14644	10448
19	19577	13568	11919	7685	7362
20	16924	10224	9287	7860	5062
21	14737	9762	6381	5774	5019
22	8048	5412	5518	2940	3561
23	7869	4009	3185	3322	1837
24+	6318	2563	1379	713	1295
Total	1862165	1491797	1363702	1239385	1175575

Tabela 60: Número médio de indivíduos por classe etária e ano, estimados pela análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idade	1995	1996	1997	1998	1999
5	191743	193655	193513	189473	188080
6	174790	167662	169605	170501	166763
7	163663	146602	143307	145773	146963
8	157848	133139	120589	119058	121500
9	145128	123856	107887	97226	97151
10	131321	110181	95263	83903	75537
11	122035	90993	80265	67964	61265
12	101266	82004	63023	55359	46875
13	84200	63591	54185	39740	35743
14	66876	50222	41069	33945	24492
15	57209	41622	34760	27646	22854
16	46272	36661	27103	22763	17965
17	35931	24139	20839	14738	12693
18	22991	16931	11855	10589	7350
19	14398	11293	9749	6282	6020
20	13016	8152	7392	6334	4054
21	9309	7440	4441	4579	3725
22	5796	4201	4327	2346	2817
23	4730	2464	1652	2152	1062
24+	6720	3546	1489	1129	1662
Total	1555240	1318354	1192311	1101500	1044571

Tabela 61: Biomassa média (kg) por classe etária e ano, estimadas pela análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idade	1995	1996	1997	1998	1999
5	85968	86826	86762	84950	84326
6	114629	109954	111228	111816	109364
7	148520	133037	130047	132286	133365
8	189902	160176	145077	143235	146173
9	223726	190935	166316	149882	149767
10	252322	211705	183041	161213	145140
11	285629	212974	187864	159073	143394
12	283201	229335	176250	154818	131091
13	276767	209026	178107	130628	117489
14	254731	191298	156434	129297	93291
15	249417	181460	151544	120529	99639
16	228414	180973	133791	112368	88684
17	198914	133631	115367	81591	70266
18	141529	104222	72975	65183	45246
19	97804	76711	66229	42676	40894
20	96907	60694	55034	47156	30180
21	75488	60330	36012	37133	30209
22	50909	36898	38011	20603	24742
23	44769	23326	15636	20365	10049
24+	82164	43358	18200	13804	20324
Total	3381712	2636869	2223925	1918609	1713634

Tabela 62: Produção pesqueira (kg) por classe etária e ano, estimadas a partir dos resultados na análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28° S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Idade	1995	1996	1997	1998	1999
5	1834	755	1061	567	797
6	8611	2992	4132	2367	3189
7	15621	7457	8814	6073	7580
8	32681	13941	16915	11955	14621
9	36355	17110	19052	13980	15563
10	74655	35728	40480	27510	28433
11	92942	45324	46795	37375	34704
12	110775	56038	54214	42657	38221
13	141219	65512	66499	52504	45545
14	129971	54366	53685	43872	31835
15	76195	35192	34614	26564	22359
16	127042	66821	62035	46215	38797
17	141367	69692	64434	44284	38691
18	122562	57862	51244	37658	28957
19	52781	20647	20288	13126	12552
20	42661	21929	20097	15967	10620
21	67312	27777	23945	13861	15682
22	29877	15502	15114	7421	9375
23	45303	22330	21677	16942	11146
24+	68209	26561	14856	7203	13598
Total	1417975	663536	639952	468099	422264

Tabela 63: Rendimento por recruta (g), biomassa média por recruta (g) e porcentagem da biomassa em relação à biomassa virgem (Y/R, B/R e B/R BV) de Lopholatilus villarii, ao largo da costa brasileira entre as latitudes 22 e 28°S, em função da taxa mortalidade por pesca (F). O valor com sublinhado simples indica o rendimento-por-recruta no F_{max} e o valor com sublinhado duplo no $F_{0,1}$.

F	Y/R	Ē/R	Ē∕R Bv
0,00	0,00	(Bv) 26507,3	100%
0,01	220,10	22009,5	83%
0,02	370,84	18541,8	70%
0,03	474,57	15819,0	60%
0,04	545,88	13646,9	51%
0,05	594,48	11889,6	45%
0,06	627.00	10449,9	39%
0,07	648,01	9257,2	35%
0,08	660,73	8259,1	31%
0,09	667,45	7416,1	28%
0,10	669,82	6698,2	25%
0,11	669,04	6082,2	23%
0,12	665,98	5549,8	21%
0,13	661,29	5086,9	19%
0,14	655,45	4681,8	18%
0,15	648,82	4325,5	16%
0,16	641,66	4010,4	15%
0,17	634,18	3730,5	14%
0,18	626,52	3480,7	13%
0,19	618,80	3256,8	12%
0,20	611,09	3055,5	12%
0,21	603,46	2873,6	11%
0.22	595,96	2708,9	10%
0,23	588,62	2559,2	10%
0,24	581,45	2422,7	9%
0,25	574,48	2297,9	9%
0,26	567,71	2183,5	8%
0,27	561,14	2078,3	8%
0,28	554,79	1981,4	7%
0,29	548,64	1891,9	7%
0,30	542,71	1809,0	7%
0,31	536,97	1732,2	7%
0,32	531,43	1660,7	6%
0,33	526,08	1594,2	6%
0,34	520,92	1532,1	6%
0,35	515,94	1474,1	6%
0,36	511,14	1419,8	5%
0,37	506,50	1368,9	5%
0,38	502,02	1321,1	5%
0,39	497,69	1276,1	5%
0,40	493,52	1233,8	5%
0,41	489,48	1193,9	5%
0,42	485,59	1156,2	4%
0,43	481,82	1120,5	4%
0,44	478,17	1086,8	4%
0,45	474,65	1054,8	4%
0,46	471,24	1024,4	4%
0,47	467,95	995,6	4%
0,48	464,75	968,2	4%
0,49	461,66	942,2	4%
0,50	458,67	917,3	3%
0,51	455,76	893,7	3%
0,52	452,95	871,1	3%
0,53	450,22	849,5	3%
0,54	447,58	828,8	3%
0,55	445,01	809,1	3%
0,56	442,52	790,2	3%
0,57	440,10	772,1	3%
0,58	437,75	754,7	3%
0,59	435,46	738,1	3%
0,60	433,24	722,1	3%

0,60 433,24 722,1 Parâmetros: *K*= 0,0404 ano⁻¹; *M*= 0,11 ano⁻¹,

 W_{∞} = 38539 g, *Tr*= 1 anos e *Tc*=5 anos

Tabela 64: Rendimentos por recruta (g) para padrões de pesca com diferentes taxas de mortalidade por pesca (*F*) e idade de primeira captura (*Tc*) para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S. Os valores com sublinhado simples indicam os rendimentos-por-recruta no F_{max} e os com sublinhado duplo no $F_{0.1}$.

F					7	c				
'	5	6	7	8	9	10	11	12	13	14
0.00	0.00	0 00	0.00	0.00	0 00	0.00	0.00	0 00	0.00	0.00
0,01	220 10	218,96	216,90	213,92	210,05	205,36	199,91	193,81	187 14	180,02
0.02	370.84	371 60	370 55	367 66	363.00	356 65	348 76	330 40	320 04	317 60
0,02	474 57	178 88	180 56	170 57	175 05	160.82	161 37	450 84	138 17	424 55
0,03	414,31 EAE 00	470,00	400,00 FE0.01	419,01 FC1 00	473,83 FC0 22	409,02	401,37 E47.74	400,04 507.45	430,47 504 44	424,55
0,04	545,88	554,50	559,91	501,83	560,33	00,00	547,74	537,15	524,11	508,95
0,05	594,48	607,89	617,35	622,70	623,94	021,21	014,70	604,90	591,98	576,42
0,06	<u>627,00</u>	<u>645,18</u>	658,90	667,93	672,23	6/1,93	667,29	658,64	646,39	630,99
0,07	648,01	670,86	688,82	701,57	709,06	711,39	708,81	701,68	690,44	675,57
0,08	660,73	688,05	710,11	726,54	<u>737,23</u>	742,25	741,86	736,43	726,42	712,34
0,09	667,45	698,98	724,96	744,95	758,77	<u>766,49</u>	<u>768,33</u>	764,69	756,04	742,91
0,10	669,82	705,29	734,98	758,36	775,21	785,56	789,64	<u>787,82</u>	<u>780,59</u>	768,52
0,11	669,04	708,17	741,34	767,94	787,69	800,60	806,86	806,85	801,08	<u>790,11</u>
0,12	665,98	708,51	744,93	774,56	797,07	812,42	820,80	822,58	818,26	808,43
0,13	661,29	706,96	746,41	778,89	804,02	821,71	832,12	835,64	832,75	824,07
0.14	655.45	704.02	746.29	781.44	809.04	828.94	841.32	846.51	845.03	837.47
0 15	648 82	700 06	744 96	782 61	812 53	834 54	848 78	855 59	855 46	849 02
0 16	641 66	695.37	742 71	782 70	814 80	838 81	854 83	863 18	864 37	859.02
0.17	634 18	600,07	730 77	781 05	816 10	842 00	850 71	860 54	872 00	867 70
0,17	626 52	684 61	736 32	780 55	816 61	811 31	863.63	874 87	878 55	875.27
0,10	610 00	670 02	722 50	770 64	016 55	044,01	000,00	070.24	070,00	010,21
0,19	611 00	672.02	732,30	776.25	010,00	040,91	000,74	019,04	004,10	001,09
0,20	011,09	012,92	70440	770,33	010,97	040,92	009,20	000,00	009,04	007,70
0,21	603,46	000,90	724,10	770.07	814,99	847,45	8/1,10	880,21	893,24	892,81
0,22	595,90	001,00	719,79	770,97	813,71	847,59	872,54	888,82	890,87	897,31
0,23	588,62	655,09	715,35	768,01	812,18	847,40	873,59	890,98	900,01	901,30
0,24	581,45	649,25	710,90	764,95	810,46	846,95	874,32	892,77	902,73	904,82
0,25	5/4,48	643,51	706,45	761,81	808,59	846,29	8/4,//	894,23	905,09	907,96
0,26	567,71	637,88	702,04	758,62	806,61	845,45	874,99	895,41	907,13	910,74
0,27	561,14	632,39	697,68	755,42	804,54	844,47	<u>875,02</u>	896,36	908,90	913,22
0,28	554,79	627,03	693,39	752,22	802,42	843,37	874,88	897,10	910,42	915,43
0,29	548,64	621,82	689,18	749,04	800,25	842,18	874,61	897,67	911,74	917,41
0,30	542,71	616,75	685,06	745,88	798,06	840,92	874,22	898,08	912,87	919,17
0,31	536,97	611,83	681,02	/42,//	795,86	839,60	8/3,/4	898,36	913,84	920,75
0,32	531,43	607,05	677,08	739,70	793,66	838,25	873,18	898,53	914,67	922,17
0,33	526,08	602,42	673,24	736,68	791,47	836,85	872,54	<u>898,60</u>	915,37	923,43
0,34	520,92	597,93	669,49	733,71	789,29	835,44	871,86	898,59	915,97	924,57
0,35	515,94	593,58	665,84	730,81	787,13	834,02	8/1,13	898,50	916,47	925,58
0,36	511,14	589,36	662,29	727,96	785,00	832,58	870,36	898,35	916,88	926,49
0,37	506,50	585,28	658,84	725,18	782,89	831,15	869,56	898,14	917,21	927,31
0,38	502,02	581,32	655,48	722,45	780,82	829,71	868,73	897,89	917,48	928,04
0,39	497,69	577,49	652,22	719,80	778,78	828,28	867,89	897,59	917,68	928,69
0,40	493,52	573,78	649,04	717,20	776,78	826,87	867,04	897,27	917,84	929,28
0,41	489,48	570,19	645,96	714,67	774,81	825,46	866,17	896,91	917,94	929,80
0,42	485,59	566,70	642,96	712,20	772,88	824,07	865,30	896,52	918,01	930,27
0,43	481,82	563,33	640,05	709,78	770,99	822,70	864,43	896,12	<u>918,03</u>	930,68
0,44	478,17	560,06	637,21	707,43	769,14	821,34	863,55	895,69	918,03 ⁻	931,05
0,45	474,65	556,89	634,46	705,14	767,33	820,01	862,68	895,26	917,99	931,38
0,46	471,24	553,81	631,79	702,91	765,55	818,69	861,81	894,81	917,93	931,66
0,47	467,95	550,83	629,19	700,73	763,81	817,39	860,94	894,34	917,84	931,92
0,48	464,75	547,94	626,66	698,60	762,11	816,12	860,08	893,87	917,73	932,14
0,49	461,66	545,13	624,20	696,53	760,44	814,86	859,22	893,40	917,61	932,33
0,50	458,67	542,41	621,81	694,51	758,82	813,63	858,37	892,92	917,47	932,50
0,51	455,76	539,76	619,48	692,54	757,22	812,42	857,54	892,43	917,31	932,64
0,52	452,95	537,19	617,21	690,62	755,66	811,23	856,71	891,95	917,14	932,76
0,53	450,22	534,70	615,01	688,74	754,14	810,06	855,89	891,46	916,96	932,87
0,54	447,58	532.27	612.87	686.92	752.65	808.91	855.08	890.97	916.77	932,95
0.55	445.01	529.92	610.78	685.13	751.19	807.79	854.28	890.48	916.58	933.02
0.56	442.52	527.63	608.74	683.39	749.77	806.68	853.49	889.99	916.37	933.07
0.57	440.10	525.40	606.76	681.70	748.38	805.60	852.71	889.51	916.16	933.11
0.58	437.75	523.23	604.83	680.04	747.01	804.53	851.94	889.03	915.94	933.13
0.59	435.46	521.12	602.95	678.42	745.68	803.49	851.19	888.55	915.72	933.15
0,60	433.24	519.07	601.12	676.84	744.37	802.47	850.44	888.07	915.49	933.15
0.61	431 09	517 07	599 33	675 30	743 10	801 47	849 71	887 60	915 26	933 14
-101		, • .	1		1	,		,	,	,

Parâmetros: K= 0,0404 ano⁻¹; M= 0,11 ano⁻¹, W_{∞} = 38539 g e Tr= 1 anos

Tabela 65: Rendimentos-por-recruta (g) para padrões de pesca com diferentes taxas de mortalidade por pesca (*F*) e natural (*M*) para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S. Os valores com sublinhado simples indicam os rendimentos-por-recruta no F_{max} e os com sublinhado duplo no $F_{0,1}$.

			/	Λ		
F	0 10	0 11	0 12	0 13	0 14	0 15
0.00	0,10	0,00	0,12	0,10	0,14	0,10
0,00	262 17	205.36	162.09	120.00	106.03	86.68
0,01	440.20	205,50	102,90	130,01	100,03	156.26
0,02	449,39	300,00	280,25	232,02	189,69	150,20
0,03	585,35	469,82	380,81	311,33	256,47	212,71
0,04	685,42	555,56	454,20	374,16	310,32	258,92
0,05	759,85	621,21	511,75	424,43	354,14	297,09
0,06	815,66	671,93	557,28	464,98	390,08	328,84
0,07	857,74	711,39	593,57	497,95	419,78	355,45
0,08	<u>889,58</u>	742,25	622,68	524,93	444,48	377,87
0,09	913,67	<u>766,49</u>	646,16	547,13	465,14	396,89
0,10	931,85	785,56	<u>665,17</u>	565,50	482,52	413,10
0,11	945,50	800,60	680,63	<u>580,75</u>	497,20	426,98
0.12	955.63	812.42	693.21	593.48	509.66	438.91
0.13	963.01	821.71	703.48	604.12	520,27	449.22
0 14	968 25	828 94	711 87	613 05	529 34	458 15
0.15	971 80	834 54	718 70	620 56	537 11	465 92
0.16	974 01	838 81	724 26	626.87	543 79	472 70
0,10	975 17	842 00	728 77	632 10	549 54	478 63
0,17	975 49	811 31	732 / 1	636 66	554 51	183 82
0,10	075 15	044,01	725 22	640.42	550 00	400,02
0,19	074 20	040,91	733,32	642.60	550,00	400,39
0,20	974,20	040,92	737,03	043,00	502,51	492,41
0,21	973,01	847,45	739,42	040,20	505,73	495,96
0,22	971,41	847,59	740,79	048,48	508,51	499,10
0,23	969,56	847,40	741,80	650,33	570,93	501,88
0,24	967,52	846,95	742,51	651,86	573,02	504,34
0,25	965,33	846,29	742,96	653,11	574,83	506,53
0,26	963,02	845,45	743,20	654,12	576,40	508,47
0,27	960,65	844,47	743,25	654,94	5//,/5	510,19
0,28	958,21	843,37	743,15	655,57	5/8,91	511,72
0,29	955,75	842,18	742,93	656,05	579,91	513,08
0,30	953,27	840,92	742,59	656,40	580,76	514,30
0,31	950,78	839,60	742,16	656,64	581,49	515,37
0,32	948,31	838,25	741,65	656,77	582,10	516,33
0,33	945,85	836,85	741,08	<u>656,82</u>	582,61	517,18
0,34	943,41	835,44	740,45	656,80	583,03	517,94
0,35	941,01	834,02	739,79	656,70	583,38	518,61
0,36	938,63	832,58	739,08	656,56	583,66	519,20
0,37	936,29	831,15	738,34	656,36	583,87	519,72
0,38	934,00	829,71	737,59	656,13	584,03	520,18
0,39	931,74	828,28	736,81	655,85	584,15	520,58
0,40	929,53	826,87	736,02	655,55	584,22	520,94
0,41	927,36	825,46	735,21	655,21	<u>584,25</u>	521,25
0,42	925,23	824,07	734,40	654,86	584,24	521,51
0,43	923,15	822,70	733,59	654,49	584,21	521,74
0,44	921,11	821,34	732,78	654,09	584,15	521,94
0,45	919,12	820,01	731,96	653,69	584,07	522,10
0,46	917,17	818,69	731,15	653,27	583,96	522,24
0,47	915,26	817,39	730,33	652,85	583,84	522,35
0,48	913,40	816,12	729,53	652,42	583,70	522,44
0,49	911,58	814,86	728,73	651,98	583,55	522,51
0,50	909,80	813,63	727,93	651,53	583,38	522,55
0,51	908,06	812,42	727,15	651,09	583,20	522,59
0,52	906,36	811,23	726,37	650,64	583,01	522,60
0,53	904,69	810,06	725,60	650,18	582,81	<u>522,60</u>
0,54	903,07	808,91	724,84	649 <u>,7</u> 3	582,61	522,59

Parâmetros: K= 0,0404 ano⁻¹; W_{∞} = 38539 g, Tr= 1 ano e Tc= 10 anos

ŝ
8
Ψ α
2
ŝ
Ö
Ы
Ē
σ
S
а
Ð
ц
Ð
g
Ъ.
ğ
þ
σ
st
8
5
ő
ō
õ
ิต
0
ă
ï,
a
i i
>
S
Ξ.
la:
õ
10
õ
7
ω Ω
g
5
б
ta
Š
j
Ð
ш
Ð
SC
ğ
Ĕ
ğ
Ē
Ð
0
ŝ
qe
ŏ
\geq
ö
0
g
ē
ac
Ē

Idade	<i>Wt</i> (kg)	Ľ	N	Nt	Мт	Nc	P (kg)	B (kg)
5	0,45	0,009	0,119	199537	22466	1777	797	84326
9	0,66	0,029	0,139	177071	23003	4820	3161	108407
7	0,91	0,057	0,167	154068	23675	8066	7319	128772
8	1,20	0,100	0,210	130393	24701	11764	14153	141494
6	1,54	0,104	0,214	105692	20354	9888	15242	146685
10	1,92	0,196	0,306	85337	22490	14403	27673	141263
11	2,34	0,242	0,352	62848	18649	12822	30010	123996
12	2,80	0,292	0,402	44199	14618	10613	29682	101802
13	3,29	0,388	0,498	29581	11597	9034	29694	76599
14	3,81	0,341	0,451	17984	6531	4939	18813	55130
15	4,36	0,224	0,334	11453	3255	2184	9524	42440
16	4,94	0,437	0,547	8198	3456	2762	13632	31161
17	5,54	0,551	0,661	4742	2292	1911	10578	19210
18	6,16	0,640	0,750	2449	1292	1103	6788	10606
19	6,79	0,307	0,417	1157	394	290	1973	6426
20	7,45	0,352	0,462	762	282	215	1600	4546
21	8,11	0,519	0,629	480	224	185	1501	2892
22	8,78	0,379	0,489	256	66	77	674	1779
23	9,47	1,109	1,219	157	111	101	953	859
24+	12,23	0,669	0,779	46	46	40	487	728
						Total	224254	1229124
Wt: peso	médio; F:	taxa de	mortalida	ade por F	esca; Z:	taxa de	mortalida	de total;
Nt: númei	o de indivíd	luos no in	nício do a	no; <i>Nm</i> : n	úmero de	indivíduo	os mortos	por ano;
Nc: captu	ra em núme	ero; P: cap	otura em	peso; <u>B</u> :t	viomassa I	média.		

10 FIGURAS

Figura 3: Latitude e profundidade (m) das 197 operações de pesca executadas pelo N/Pq *Orion* nos anos de 1994 e 1995.

Figura 4: Latitude e profundidade (m) das 106 operações de pesca executadas pelo B/P *Margus II* nos anos de 1996 e 1997.

Figura 5: Distribuição de freqüência e curva de densidade gama ajustada aos valores de *CPUE* (n/1000ah) calculados para as operações do N/Pq *Orion*.

Figura 6: Diagrama de dispersão dos resíduos do modelo de variação da *CPUE* nas operações do N/Pq *Orion*.

Figura 7: Gráfico normal de probabilidade da deviância residual do modelo de variação da *CPUE* nas operações do N/Pq *Orion* em função dos percentis da distribuição normal padrão.

Figura 8: *Boxplot* da *CPUE* (n/1000 ah) nas operações do N/Pq *Orion* por estrato de profundidade e faixa de latitude.

Figura 9: Distribuição de freqüência e curva de densidade gama ajustada aos valores de *CPUE* (n/1000ah) calculados para as operações do B/P *Margus II*.

Figura 10: Diagrama de dispersão dos resíduos do modelo de variação da *CPUE* nas operações do B/P *Margus II*.

Figura 11: Gráfico normal de probabilidade da deviância residual do modelo de variação da *CPUE* nas operações do B/P *Margus II* em função dos percentis da distribuição normal padrão.

Figura 12: *Boxplot* da *CPUE* (n/1000 ah) nas operações do B/P *Margus II* por estrato de profundidade e faixa de latitude.

Figura 13: *Boxplot* da *CPUE* (n/1000 ah) nas operações do B/P *Margus II* por cruzeiro (primavera e outono) e estrato de profundidade (m).

Figura 14: Distribuição de freqüência e curva de densidade normal ajustada aos valores do índice de diversidade de Shannon (*H*') calculados para as operações do B/P *Margus II*.

Figura 15: Diagrama de dispersão dos resíduos do modelo de variação do índice de diversidade de Shannon (H') nas operações do B/P *Margus II*.

Figura 16: Gráfico normal de probabilidade da deviância residual do modelo de variação do índice de diversidade de Shannon (*H* ') nas operações do B/P *Margus II* em função dos percentis da distribuição normal padrão.

Figura 17: *Boxplot* do índice de diversidade de Shannon (H') nas operações de pesca do B/P *Margus II* por estrato de profundidade e faixa de latitude.

Figura 18: *Boxplot* do índice de diversidade de Shannon (*H*') nas operações de pesca do B/P *Margus II* por cruzeiro (primavera e outono) e estrato de profundidade.

Figura 19: Distribuição de freqüência e curva de densidade normal ajustada aos valores de equitatividade (*Eq*) calculados para as operações do N/P *Margus II*

Figura 20: Diagrama de dispersão dos resíduos do modelo de variação do índice de equitatividade (*Eq*) nas operações do B/P *Margus II.*

Figura 21: Gráfico normal de probabilidade da deviância residual do modelo de variação do índice de equitatividade (*Eq*) nas operações do B/P *Margus II* em função dos percentis da distribuição normal padrão.

Figura 22: *Boxplot* do índice de equitatividade (Eq) nas operações de pesca do B/P *Margus II* por estrato de profundidade e faixa de latitude.

Figura 23: *Boxplot* do índice de equitatividade (*Eq*) nas operações de pesca do B/P *Margus II* por cruzeiro (primavera e outono) e estrato de profundidade.

continua

Figura 24: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do N/Pq *Orion*.

Figura 24 (continuação)

Figura 25: Características dos grupos de operações de pesca do N/Pq *Orion* determinados através do TWINSPAN: a) *CPUE* (n/1000ah), b) profundidade (m), c) latitude (°S), d) longitude (W°).

Figura 26: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do cruzeiro de primavera do B/P *Margus II*.

Figura 27: Características dos grupos de operações de pesca do cruzeiro de primavera do B/P *Margus II* determinados através do TWINSPAN: a) *CPUE* (n/1000ah), b) profundidade (m), c) latitude (°S), d) longitude (W°).

Figura 28: Tabela ordenada dos grupos de operações de pesca (aa, ab, ba e bb) e de espécies (AAA, AAB, AB, BA, BBA e BBB), resultantes da Análise de Espécies Indicadoras em Duas Vias (TWINSPAN) das operações de pesca do cruzeiro de outono do B/P *Margus II*.

Figura 29: Características dos grupos de operações de pesca do cruzeiro de outono do B/P *Margus II* determinados através do TWINSPAN: a) *CPUE* (n/1000ah), b) profundidade (m), c) latitude (°S), d) longitude (W°).

Figura 30: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas dos cruzeiros do N/Pq *Orion*. Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 24.

indicados na Figura 24. Os valores atribuídos às espécies referem-se à sua posição em relação ao primeiro eixo canônico da Figura 31: Mapa do primeiro eixo da Análise Canônica de Correspondência das capturas do N/Pq Orion. As operações de pesca encontram-se representadas por símbolos (●,O,□ e ■), agrupados de acordo com resultados obtidos com o TWINSPAN Figura 30. As isolinhas representam a interpolação dos valores das operações de pesca em relação ao primeiro eixo canônico.

Figura 32: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas do cruzeiro de primavera do B/P *Margus II*. Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 26.

Figura 34: Diagrama de ordenação de espécies resultante da Análise Canônica de Correspondência das capturas do cruzeiro de outono do B/P *Margus II*. Os grupos de espécies (AAA, AAB, AB, BA, BBA e BBB) referem-se aos resultados obtidos com o TWINSPAN indicados na Figura 28.

Figura 36: Diagrama de ordenação resultante da Análise Canônica de Correspondência das capturas dos cruzeiros de primavera (1) e outono (2) do B/P *Margus II*. As setas tracejadas indicam a movimentação das espécies em função dos dois primeiros eixos canônicos.

Figura 37: Produção trimestral de peixes pelágicos desembarcada por barcos de linha-de-fundo nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 38: Produção trimestral de peixes demersais desembarcada por barcos de linha-de-fundo nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

ano-trimestre

Figura 39: Esforço de pesca trimestral (dias efetivos de pesca) de cruzeiros direcionados para a captura de peixes demersais de barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 40: *CPUE* (kg/dia) trimestral de cruzeiros direcionados para a captura de peixes demersais de barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 41: Freqüência acumulada da participação relativa da espécie por desembarque no período de 1996 a 1999.

176

Santos

Ubatuba

Niterói

Santos

Niterói

continua

participação relativa da espécie no desembarque (%)

ivəinvut zbinogoqovsiM

(%) abalumusa acumulada (%)

001

08

09

04

50

'dds snjəydəuid \mathcal{F}

continua

100

80

09

40

20

0

0

---- 1996 ---- 1997 ---- 1998 ---- 1998

participação relativa da espécie no desembarque (%)

Santos

participação relativa da espécie no desembarque (%)

Figura 41 (continuação)

ano-trimestre

Figura 42: Produção trimestral do *Genidens barbus* desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 43: Produção trimestral do *Lopholatilus villarii* desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 44: Produção trimestral do *Epinephelus niveatus* desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 45: Produção trimestral de *Pseudopercis* spp. desembarcada por barcos de linha-de-fundo nos portos pesqueiros de Niterói, Santos e Ubatuba nos anos de 1996 a 1999

Figura 46: Distribuição de freqüência e curva de densidade gama ajustada aos valores de CPUE (kg/dia) de *Lopholatilus villarii* calculados para os cruzeiros das frotas de linha-de-fundo nos anos de 1996 a 1999.

Figura 47: Diagrama de dispersão dos resíduos do modelo de variação da *CPUE* (kg/dia) de *Lopholatilus villarii* nos cruzeiros das frotas de linha-de-fundo nos anos de 1996 a 1999.

Figura 48: Gráfico normal de probabilidade do resíduo componente do desvio padronizado do modelo de variação da *CPUE* (kg/dia) de *Lopholatilus villarii* nos cruzeiros das frotas de linha-de-fundo nos anos de 1996 a 1999. As linhas tracejadas indicam o intervalo de confiança (α =5%) da estimativa da normal padrão.

Figura 49: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por porto de desembarque dos barcos de linha-de-fundo nos anos de 1996 a 1999.

Figura 50: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por classe de latitude dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 51: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por ano dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 52: *Boxplot* da CPUE (kg/dia) de *Lopholatilus villarii* por trimestre dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 53: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por faixa de longitude dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 54: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por porto de desembarque (<u>Nit</u>erói, <u>San</u>tos e <u>Uba</u>tuba) e trimestre, dos barcos de linha-de-fundo nos anos de 1996 a 1999.

Figura 55: *Boxplot* da *CPUE* (kg/dia) de *Lopholatilus villarii* por ano e trimestre, dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba.

Figura 56: *CPUE* (kg/dia de pesca) média observada (*CPUE*) e ajustada (*CPUE*') dos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba, por ano e trimestre.

Figura 57: Variação anual da *CPUE* padronizada de *Lopholatilus villarii* obtida pelos barcos de linha-de-fundo que desembarcaram nos portos de Niterói, Santos e Ubatuba nos anos de 1996 a 1999.

Figura 58: Distribuição de freqüência de *Lopholatilus villarii* por classe de comprimento furcal (Lf mm), curva de captura e, indicado pela seta, o comprimento médio de captura.

Figura 59: *Boxplot* e média (■) do comprimento furcal (Lf mm) de *Lopholatilus villarii* por ano.

Figura 60: Distribuição anual de freqüência por classe de comprimento furcal, Lf mm, de *Lopholatilus villarii* com indicação do número de indivíduos medidos.

Figura 61: Distribuição de freqüência por classe de comprimento furcal, Lf (mm) e curva de densidade gama das capturas de *Lopholatilus villarii* nas operações de pesca do B/P *Margus II*.

Figura 62: Diagrama de dispersão dos resíduos do modelo da variação de comprimentos de *Lopholatilus villarii* nas operações do B/P *Margus II*.

Figura 63: Deviância residual do modelo da variação de comprimentos de *Lopholatilus villarii* nas operações do B/P *Margus II* em função dos percentis da distribuição normal padrão.

Figura 64: *Boxplot* do comprimento furcal, Lf (mm), de *Lopholatilus villarii* nas operações do B/P *Margus II* por faixa de longitude e estrato profundidade.

Figura 65: *Boxplot* do comprimento furcal, Lf (mm), de *Lopholatilus villarii* nas operações do B/P *Margus II* por faixa de latitude e estrato profundidade.

Figura 66: *Boxplot* do comprimento furcal, Lf (mm), de *Lopholatilus villarii* por categoria de sexo: fêmea (F), indeterminado (I) e macho (M).

Figura 67: *Boxplot* de peso total, Wt (g), de *Lopholatilus villarii* por categoria de sexo: fêmea (F), indeterminado (I) e macho (M).

Figura 68: Regressão linear do comprimento padrão, Ls (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 69: Diagrama de dispersão dos resíduos da regressão linear do comprimento padrão, Ls (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 70: Regressão linear do comprimento total, Lt (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 71: Diagrama de dispersão dos resíduos da regressão linear do comprimento total, Lt (mm), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 72: Regressão de potência do peso total, Wt (g), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 73: Diagrama de dispersão dos resíduos do ajuste do peso total, Wt (g), sobre o comprimento furcal, Lf (mm), para sexos agrupados de *Lopholatilus villarii*.

Figura 74: Proporção sexual de *Lopholatilus villarii* por classe de comprimento furcal, Lf (mm).

Figura 75: Proporção de fêmeas de *Lopholatilus villarii* juvenis e adultas por classe comprimento furcal, Lf (mm).

Figura 76: Proporção de machos de *Lopholatilus villarii* juvenis e adultos por classe comprimento furcal, Lf (mm).

Figura 77: Curva representativa da freqüência relativa acumulada de fêmeas adultas por classe de comprimento furcal, Lf (mm). A seta indica a estimativa do comprimento médio de primeira maturação gonadal.

Figura 78: Curva representativa da freqüência relativa acumulada de machos adultos por classe de comprimento furcal, Lf (mm). A seta indica a estimativa do comprimento médio de primeira maturação gonadal.

Figura 79: Freqüências bimestrais dos diferentes estádios de maturidade gonadal de fêmeas de *Lopholatilus villarii*. A: imaturo, B: em maturação, C: maduro, D: esvaziado.

Figura 80: Variação bimestral do índice gonadossomático de fêmeas de *Lopholatilus villarii*.

Figura 81: Variação bimestral dos fatores de condição alométrico calculados a partir do peso total (K1) e eviscerado (K2) de fêmeas de *Lopholatilus villarii*

Figura 82: Face proximal (A) e distal (B) do otólito *sagitta* direito de uma fêmea de *Lopholatilus villarii* de 655 mm de comprimento furcal.

Figura 83: Cortes transversais de otólitos de *Lopholatilus villarii*, vistos com luz transmitida. A) orientação e indicações das zonas opaca e translúcida de um otólito com seis anéis (zonas opacas) de uma fêmea de 358 mm de comprimento furcal e B) detalhe de um otólito com a indicação do eixo de medição dos 15 anéis de uma fêmea de 480 mm de comprimento furcal.

Figura 84: Variação mensal das porcentagens de bordas opacas e translúcidas observadas em otólitos de *Lopholatilus villarii.*

Figura 85: *Boxplot* e variação da média (---) do incremento marginal dos otólitos de *Lopholatilus villarii* por mês. Os números sobre a abscissa representam o número de otólitos analisados.

Figura 86: Regressão logística do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para machos de *Lopholatilus villarii*.

Figura 87: Diagrama de dispersão dos resíduos do ajuste do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para machos de *Lopholatilus villarii.*

Figura 88: Regressão logística do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para fêmeas de *Lopholatilus villarii*.

Figura 89: Diagrama de dispersão dos resíduos do ajuste do comprimento furcal, Lf (mm), sobre o raio total do otólito, Rt (mm), para fêmeas de *Lopholatilus villarii.*

Figura 90: Ajuste da equação de crescimento de von Bertalanffy sobre as médias de comprimento furcal, Lf (mm), de machos de *Lopholatilus villarii* retrocalculados à época de formação do anel etário.

Figura 91: Ajuste da equação de crescimento de von Bertalanffy sobre as médias de comprimento furcal, Lf (mm), de fêmeas de *Lopholatilus villarii* retrocalculados à época de formação do anel etário.

Figura 92: Ajuste da equação de crescimento de von Bertalanffy sobre as médias de comprimento furcal, Lf (mm), de *Lopholatilus villarii*, sexos agrupados, retrocalculados à época de formação do anel etário.

Figura 93: Ajuste da equação de crescimento de von Bertalanffy sobre os comprimentos furcais, Lf (mm), de machos de *Lopholatilus villarii* retrocalculados à época de formação do anel etário.

Figura 94: Ajuste da equação de crescimento de von Bertalanffy sobre os comprimentos furcais, Lf (mm), de fêmeas de *Lopholatilus villarii* retrocalculados à época de formação do anel etário.

Figura 95: Ajuste da equação de crescimento de von Bertalanffy sobre os comprimentos furcais, Lf (mm), de *Lopholatilus villarii*, sexos agrupados, retrocalculados à época de formação do anel etário.

Figura 96: Ajuste da equação de crescimento de von Bertalanffy sobre os dados de comprimento furcal, Lf (mm), na idade de captura de machos de *Lopholatilus villarii.* Os comprimentos nas idades I a IV foram retrocalculados.

Figura 97: Ajuste da equação de crescimento de von Bertalanffy sobre os dados de comprimento furcal, Lf (mm), na idade de captura de fêmeas de *Lopholatilus villarii.* Os comprimentos nas idades I a IV foram retrocalculados.

Figura 98: Ajuste da equação de crescimento de von Bertalanffy sobre os dados de comprimento furcal, Lf (mm), na idade de captura de *Lopholatilus villarii*, sexos agrupados. Os comprimentos nas idades I a IV foram retrocalculados.

Figura 99: Curva de captura linearizada de *Lopholatilus villarii* capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1994.

Figura 100: Curva de captura linearizada de *Lopholatilus villarii* capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1995.

Figura 101: Curva de captura linearizada de *Lopholatilus villarii* capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1996.

Figura 102: Curva de captura linearizada de *Lopholatilus villarii* capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1997.

Figura 103: Curva de captura linearizada de *Lopholatilus villarii* capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1998.

Figura 104: Curva de captura linearizada de Lopholatilus villarii capturado com linha-de-fundo, ao largo da costa brasileira entre as latitudes 22° e 28°S, no ano de 1999.

Figura 105: Estimativa do número de indivíduos desembarcados, por ano e por classe etária, de *Lopholatilus villarii* capturado ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 106: Taxas de mortalidade por pesca (*F*) por classe etária e por ano estimadas pela análise de população virtual para *Lopholatilus villarii* da costa brasileira entre as latitudes 22 e 28°S, assumindo uma taxa de mortalidade natural (*M*) de 0,11 ano⁻¹.

Figura 107: Número médio de indivíduos por classe etária e ano, estimados pela análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 108: Biomassa média (kg) por classe etária e ano, estimadas pela análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 109: Produção pesqueira (kg) por classe etária e ano, estimadas a partir dos resultados na análise de população virtual para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 110: Rendimento por recruta (Y/R em g), biomassa média por recruta (B/R em g) de *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S, em função da taxa mortalidade por pesca (F).

Figura 111: Rendimentos por recruta (Y/R g) para padrões de pesca com diferentes taxas de mortalidade por pesca (F) e idade de primeira captura (TC) para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 112: Rendimentos por recruta (Y/R g) para padrões de pesca com diferentes taxas de mortalidade por pesca (F) e natural (M) para Lopholatilus villarii, ao largo da costa brasileira entre as latitudes 22 e 28°S.

Figura 113: Captura em número (milhares) e biomassa média (t) anual para diferentes fatores de multiplicação da mortalidade por pesca (*F*) estimados pelo modelo de Thompson e Bell para *Lopholatilus villarii*, ao largo da costa brasileira entre as latitudes 22 e 28°S.